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Abstract

Ground-based aircraft trajectory prediction is a major concern in air traffic control and

management. A safe and efficient prediction is a prerequisite to the implementation of

automated tools that detect and solve conflicts between trajectories. This paper focuses

on the climb phase, because predictions are much less accurate in this phase than in the

cruising phase.

Trajectory prediction usually relies on a point-mass model of the forces acting on

the aircraft to predict the successive points of the future trajectory. The longitudinal

acceleration and climb rate are determined by an equation relating the modeled power

of the forces to the kinetic and potential energy rate. Using such a model requires

knowledge of the aircraft state (mass, current thrust setting, position, velocity, etc.), at-

mospheric conditions (wind, temperature) and aircraft intent (thrust law, speed intent).

Most of this information is not available to ground-based systems.

In this paper, we improve the trajectory prediction accuracy by learning some of

the unknown point-mass model parameters from past observations. These unknown

parameters, mass and thrust, are adjusted by fitting the modeled specific power to the

observed energy rate. The thrust law is learned from historical data, and the mass

is estimated on past trajectory points. The adjusted parameters are not meant to be

exact, however they are designed so as to improve the energy rate prediction. The

performances of the proposed method are compared with the results of standard model-

based methods relying on the Eurocontrol Base of Aircraft DAta (BADA), using two

months of radar track records and weather data.

Keywords: aircraft trajectory prediction, BADA, energy rate, mass estimation, thrust

law, Machine Learning
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Figure 1: Euler rotations of angles (Ψa, γa,Φ) with counter-clockwise convention,

and right-handed coordinate systems.

Nomenclature

c Thrust setting coefficient

CAS Calibrated Airspeed

D Drag

ESF Energy share factor

g Gravitational acceleration

g0 Gravitational acceleration at mean

sea level

h Geodetic height

Hp Geopotential pressure altitude (i.e.

geopotential altitude in ISA condi-

tions)

ISA International Standard Atmo-

sphere

L Lift

M Mach number

m Aircraft mass

T Air temperature

Thr Thrust

Va True airspeed

Va/xhyh
Projection of the true airspeed vec-

tor onto the local horizontal plane

Vg Ground speed (projection of the

inertial speed on the local hori-

zontal plane)

Vi Inertial velocity

W Wind, with (WN ,WE ,WUp) the

Northbound, Eastbound, and up-

ward components

γa Air-relative flight path angle

γi Inertial flight path angle (i.e. an-

gle between
−→
Vg and

−→
Vi)

θc Crab angle (Ψi −Ψa)

Φ Bank angle

Ψa Aerodynamic heading (direction

of true airspeed vector)

Ψi True course angle (direction of

inertial velocity vector)

ΨW Direction of wind vector

xk,i Vector of state variables (temper-

ature differential, aircraft posi-

tion, velocity, bank angle, etc.)

for point i in trajectory k
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True course True course

Figure 2: Ψ and γ angles (with xh pointing to the North)

Geographic

North

True route

Figure 3: Angles in the local horizontal plane
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Introduction

Ground-based aircraft trajectory prediction is central to most applications in Air

Traffic Control and Management (ATC/ATM) and has become more so with the emer-

gence of new operational concepts [1, 2] envisioning trajectory-based operations. More-

over, trajectory prediction accuracy is essential to the new automated tools and algo-

rithms that have emerged in the recent years. Some of these algorithms require to test

a large number of alternative trajectories. As an example, in [3] an iterative quasi-

Newton method is used to find trajectories for departing aircraft, minimizing the noise

annoyance. Another example is [4] where Monte Carlo simulations are used to esti-

mate the risk of conflict between trajectories, in a stochastic environment. Some of the

automated tools currently being developped for ATC/ATM can detect and solve con-

flicts between trajectories, using Genetic Algorithms ([5]1), or Differential Evolution

or Particle Swarm Optimization ([7]). To be efficient, these methods require a fast and

accurate trajectory prediction, and the capability to test a large number of “what-if”

trajectories. Such requirements forbid the sole use of on-board trajectory prediction,

which is certainly the most accurate, but is not sufficient for these most promising ap-

plications. So, even with the existing or future datalink capabilities that could transmit

the on-board prediction to the ground systems, there remains a need for a fast and

accurate ground-based prediction.

Unfortunately, ground-based trajectory predictors use point-mass models with un-

known or uncertain inputs. Point-mass models relate the inertial acceleration to the

forces acting on the center of mass. Such a model is formulated as a set of differen-

tial algebraic equations that must be integrated over a time interval in order to predict

the successive aircraft positions, knowing the aircraft initial state (mass, current thrust

setting, position, velocity, bank angle, etc.), atmospheric conditions (wind, tempera-

ture), and aircraft intent (thrust profile, speed profile, route, for example). Most of this

information is either not available to ground systems, or known with uncertainty. In

this paper, we focus on climb prediction, which is currently fairly inaccurate due to the

basic assumptions currently being made on the input values of the point-mass model

(e.g. : standard reference mass, reduced power climb at a given calibrated airspeed or

Mach number).

Machine Learning is a paradigm of Artificial Intelligence, where a machine (e.g.

a computer) extrapolates from a set of examples, so that it can make accurate predic-

tions about future examples. Following this line, our approach is to learn some of

the unknown point-mass model parameters from observations, in order to improve the

trajectory prediction accuracy. Previous research studies have already followed this

path, using probabilistic methods ([8]), online learning ([9]), or adaptive adjustments

of some modeled parameters ([10, 11, 12, 13]). Considering a climbing aircraft, the

past trajectory points are used to adjust either a modeled aircraft mass (assuming a

gianazza@recherche.enac.fr (D. Gianazza)
1These algorithms are at the root of the strategic deconfliction through speed adjustments developped in

the European ERASMUS project ([6]). A more recent application is the SESAR 4.7.2 (Separation Task in

En Route Trajectory-based Environment) project, where lateral and vertical maneuvers are also used.
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standard thrust profile), or a modeled thrust (assuming a standard reference mass)2, so

as to minimize the error between the model and the observation. In [14], we introduce

a Machine Learning approach where an optimal thrust law is learned from historical

data, and where the individual aircraft masses are estimated from past trajectory points.

The preliminary results show a good fit of the modeled power to the observed energy

rate. In [15], the proposed mass estimation method is compared with the adaptive

mechanism of Schultz et al. [13], showing better performances on simulated data.

In the present publication, we show how the thrust law learned from examples and

the estimated mass enhance the altitude prediction when compared with the standard

BADA predictor and several of its variants. Contrary to most previous studies that

use only simulated data (or small samples of real data, for one of them), we validate

the proposed method on a large amount of real data, using two months of recorded

climbing trajectories from aircraft departing from the Paris-Orly and Paris-Charles-

de-Gaulle airports. In addition, the mass estimation method is extended to the use of

a BADA reduced climb power. An empirical assessment of the trajectory prediction

quality is also given, considering how the model performs on the past trajectory.

The rest of the paper is organized as follows: Section 1 describes the models and

equations that are useful for climb prediction. Section 2 introduces the analytical

method used to estimate the aircraft mass, for a given thrust law. Section 3 describes

how the optimal thrust law is learned from historical data. We show in section 4 how

the inferred thrust law and estimated mass can be used for prediction purposes. The

real data and experimental setup used in our experiments are detailed in section 5, and

results are shown in section 6. The last section concludes and gives some perspectives

of future research.

1. Models and Equations

1.1. The Second Newton’s Law and Point-mass Model Equations

Ground-based trajectory predictors for air traffic management and control usually

rely on a simplified point-mass model to predict aircraft trajectories. In such a model,

all forces acting on the aircraft body are exerted at the center of mass, making several

simplifying approximations. The inertial moments and angular accelerations of the air-

craft around its center of gravity are not included in the model. The aircraft is modeled

as a point of mass m, subject to the second Newton’s law that gives us the inertial

acceleration −→ai = d
−→
Vi

dt =
−̇→
Vi of the center of mass (the dot above a vector denotes the

time derivative of this vector):

m
−̇→
Vi =

−→
Thr +

−→
D +

−→
L +m−→g (1)

In equation (1), mass is considered a stationary variable3 regarding its impact on

the aircraft dynamics. At a larger scale, however, the fuel burn and the consequent

2One of these studies ([8]) also models the wind as a stochastic variable.
3We assume in fact that d

dt
(mVi) = mV̇i, and neglect the impact of ṁ on the acceleration.
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loss of mass must be taken into account when integrating the equations to predict the

future trajectory. Concerning the forces, it is assumed that the thrust
−→
Thr exerted by

the aircraft engines is aligned to the airspeed vector
−→
Va, and in the same direction. The

drag
−→
D exerted by the relative wind on the flying airframe is also aligned to

−→
Va, by

definition, and in the opposite direction. The lift force
−→
L caused by the motion of the

airframe through the air is perpendicular to these vectors and in the plane of symmetry

of the aircraft. The flight is assumed to be symmetric and there is no aerodynamic

sideforce. The effects of Earth rotation on the aircraft dynamics are neglected (flat

Earth approximation).

With the above simplifying approximations, and by expressing the forces in ad-

equate coordinate systems, equation (1) can be transformed into the three following

scalar equations governing the aircraft dynamics:

V̇a =
Thr −D

m
− gsinγa −

−̇→
W.

−→
Va

Va

(2)

γ̇a =
L cosΦ

mVa
− g cos γa

Va

+
1

mVa

[

ẆN sin γa cosΨa + ẆE sin γa sinΨa − ẆUp cos γa

] (3)

Ψ̇i =
L

mVg
(sin θc sin γa cosΦ + cos θc sinΦ)−

(
Thr −D

mVg

)

sin θc cos γa (4)

1.2. The Total Energy Model Equations, with the Effect of Wind

Introducing the pressure altitude Hp and a temperature correction that accounts for

the use of the pressure altitude instead of the geodetic altitude, equation (2) can be

written as follows:

Power

m
︸ ︷︷ ︸

specific power

= Va
dVa

dt
+ g0

(
T

T −∆T

)
dHp

dt
︸ ︷︷ ︸

specific energy rate

+
d
−→
W

dt
.
−→
Va

︸ ︷︷ ︸

wind effect

(5)

In this equation, the vertical component of the wind is assumed to be zero because

of the lack of sufficient information. In our data, the wind is known through a weather

model updated every 3 hours. The vertical wind, as a local phenomenon due for ex-

ample to convective weather, is out of the scope of such a weather model, which aims

at providing wind data for Air Trafic Management purposes on a large scale. Such

assumptions are most common in the literature dealing with similar subjects (see [16]

for example). Note however that the effect of the wind gradient – i.e. the changes in

direction and magnitude of the horizontal wind while moving along the vertical axis –

is taken into account.
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Equation (5) governs the energy rate of the aircraft, and relates both the longitudinal

acceleration dVa

dt and the rate of climb
dHp

dt to the power of the forces exerted at the

center of mass (see [17] for more details). The power is defined as follows:

Power = (Thr −D)Va (6)

Considering the term representing the energy rate in the right-hand side of equa-

tion (5), we see that the available power that goes to the aircraft motion is shared

between longitudinal acceleration dVa

dt and climb (or descent) rate
dHp

dt . The energy

share factor ESF is defined as follows:

ESF =
g0

(
T

T−∆T

)
dHp

dt

Va
dVa

dt + g0

(
T

T−∆T

)
dHp

dt

=

[

1 +

(
T −∆T

T

)(
Va

g0

)(
dVa

dHp

)]−1

(7)

This energy share between longitudinal acceleration and rate of climb is directly

related to how the aircraft is operated by the pilot (or the autopilot). Equation (7) does

not come from a physical law as equation (5), but is just a definition of a quantity

reflecting the pilot’s choice, that is usually unknown to ground-based systems.

Equation (5) is sufficient when estimating the mass or learning the optimal thrust

law from historical data, making no assumptions on the ESF law. However, if we want

to predict the future pressure altitude Hp and true airspeed Va of an aircraft, we do need

to make some additional assumptions on the ESF law (constant CAS/Mach climb, or

constant ROCD, for example).

1.3. Computing the Aircraft Trajectory, Assuming Complete and Accurate Information

Knowing the initial state (Hp, Va,m), the fuel flow given by the BADA model, and

the two laws chosen for the thrust setting c and energy share factor ESF, we can com-

pute the variations of the state variables Hp, Va and m over time, using equations (5)

and (7).

Considering equation (5), the definition of the ESF given in equation (7) is com-

pletely equivalent to the following formulation:

g0

(
T

T −∆T

)
dHp

dt
=

(

Power

m
− d

−→
W

dt
.
−→
Va

)

ESF (8)

Denoting τ the ratio T
T−∆T , these equations can be reformulated into the differen-

tial algebraic equation (9):

(
1
2 g0τ
0 g0τ

)( d
dt (V

2
a )

dHp

dt

)

=

(

Power

m
− d

−→
W

dt
.
−→
Va

)(
1

ESF

)

(9)

When integrating equation (9) over time, we can compute the future altitude and

speed of the aircraft as illustrated with the equation (10):

(
Va

2

Hp

)

t

−
(

Va
2

Hp

)

0

=

∫ t

0

(

Power

m
− d

−→
W

dt
.
−→
Va

)(
1
2 g0τ
0 g0τ

)−1(
1

ESF

)

dt
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(10)

Equation (10) shows the key elements of aircraft trajectory prediction: mass, power,

energy share factor, and weather (wind and air temperature). These are also the poten-

tial sources of uncertainty with which ground-based trajectory predictors have to deal.

1.4. Model of the Forces and Power

Computing a trajectory requires a computational model of the aerodynamic drag D
of the airframe flying through the air, and of the engines’ thrust Thr. In our experiments,

we used version 3.9 of the Eurocontrol BADA model (see [17]) to compute the drag D
and the maximum climb thrust Thrmax climb.

More accurate BADA models exist (BADA 4 family, [18]), and are available under

license, for a smaller number of aircraft types. They actually model the aircraft dy-

namics more accurately than BADA 3.9 ([19]), fitting the manufacturer data better and

making fewer simplifying assumptions. These enhancements are useful, especially for

realistic simulations.

However, we are not actually looking for a more accurate point-mass model, here.

Our aim is rather to improve the estimation of the input variables, which is a critical

issue considering all the unknowns and uncertainties on these variables when using the

point-mass model as a ground-based predictor. BADA 3.9 is sufficient for our purpose,

in this context.

Considering the equations found in [17], Thrmax climb is simply a function of Hp, ∆T ,

and Va, and the drag D can be expressed as a polynomial of the mass m, which coeffi-

cients are functions of the other state variables:

Thrmax climb = f1(Hp, Va,∆T ) (11a)

D = f2(Hp, Va,∆T ) +m2f3(Hp, Va,∆T,Φ) (11b)

As aircraft do not always fly at the maximum climb thrust in reality, we introduce

a thrust reduction coefficient c, and model the thrust as follows:

Thr = cThrmax climb (12)

The power (Thr − D)Va can then be expressed as a function of the thrust setting

coefficient c, the mass m, and the other state variables:

Power = (cThrmax climb −D)Va

=
(
cf1(Hp, Va,∆T )− f2(Hp, Va,∆T )−m2f3(Hp, Va,∆T,Φ)

)
Va

(13)

At this point, it is important to notice that the power, given either by equation (13)

or by the BADA equation for the reduced power climb ([17]), is a polynomial with

respect to the mass m. This allows us to devise simple analytical methods to estimate

the mass from the observations, as shown in the next section.
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1.5. Modeling the thrust setting law c = f(.|θ)
The law governing the thrust setting c can be modeled as a function f(.|θ) parametrized

by θ = (θ1, . . . , θq), a vector of q parameters. This law is assumed to be the same for

all aicraft belonging to a given category. In the current paper, one such category con-

tains all aircraft of a same type departing from a same airport. Further refinements may

consider aircraft belonging to a same airline, or different categories for typical climb

profiles extracted from the data.

Considering a set of trajectories with the same thrust setting law f(.|θ), the thrust

coefficient at point i of a trajectory k is simply ck,i = f(xk,i|θ), with xk,i a vector

of state variables (altitude Hp, velocity, bank angle, temperature differential ∆T , for

example) measured or computed at the ith point.

In order to learn the thrust law f (see section 3) that gives the best prediction per-

formances when used together with the estimated masses (see section 2), we need to

choose a model for this law. This arbitrary choice may depend on the data made avail-

able to the ground-based predictor. As a proof of concept, we have chosen two models:

one for the general case, and another one for the case of aircraft following a constant

CAS/Mach climb, with the target CAS and Mach number known to the ground systems.

For the first model, used for Case Study 1 of section 6.3, we have chosen a polyno-

mial function of the pressure altitude Hp:

f(x|θ) =
4∑

i=0

θi(Hp)
i (14)

For the second model, when considering CAS/Mach climbs with known target Cal-

ibrated Airspeed and Mach number, we have an opportunity to use this knowledge of

the aircraft intent in the thrust law itself. This is done by introducing the crossover alti-

tude Hcrossover
p in the polynomial function modeling the thrust setting. The following

law is used in Case Study 2 of section 6.3:

f(x|θ) =
4∑

i=0

θi
(
Hp −Hcrossover

p (CASk,Mk)
)i

(15)

2. Mass Estimation, Knowing the Thrust Setting

Using equation (5), the mass m can be estimated in a very simple way for a given

thrust setting c. The specific power is a polynomial with respect to the mass m, and

we can measure the energy rate Va.
dVa

dt + g.dhdt and wind effect d
−→
W
dt .

−→
Va from recorded

weather and radar data. Note that the mass can be estimated without making any as-

sumption on the ESF law.
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2.1. Equivalent Mass at a Given Point

Introducing the total energy Energy = 1
2mV 2

a +mgh and considering equation (5),

let us introduce P and Q, defined as follows:

P = Power −m

[

d

dt

(
Energy

m

)

+ (
d
−→
W

dt
.
−→
Va)

]

︸ ︷︷ ︸

Q

(16a)

Q = Va
dVa

dt
+ g0

(
T

T −∆T

)
dHp

dt
+

d
−→
W

dt
.
−→
Va (16b)

The quantity Q can be computed at any point of the past trajectory, or at any point of

a recorded trajectory, using the available radar and weather information. Considering

the power model given by equation (13) in section 1.2, we see that P is a simple

polynomial function of the second degree with respect to the aircraft mass m, when the

thrust setting c is fixed. So the total energy model equation (5) becomes:

P (m)

m
= 0 (17)

with

P (m) =− m2f3(Hp, Va,∆T,Φ)−mQ

+ cf1(Hp, Va,∆T )− f2(Hp, Va,∆T )
(18)

These equations are valid at any given point i of the past trajectory, knowing Va,

Hp, ∆T and the thrust setting c. The equivalent mass mi at point i is obtained by

solving equation (17), giving us two possible solutions. In our experiments, only one

solution was positive.

2.2. Least Squares Estimation of the Mass, Using Several Points

With the one-point method presented in the previous section, we observed on a few

recorded trajectories that the estimated mass changes from one point to the next. In

order to avoid the variations that cannot be explained solely by the fuel consumption

or by a change in the thrust setting, we now introduce a least-squares approximation of

the mass, using several points instead of only one.

Let us consider n points in a given climb segment, with different values of the thrust

settings C = (c1, . . . , cn). The mass is assumed to be constant over the considered

segment. This approximation is reasonable: When simulating the climb of an Airbus

A320 from FL130 to FL300 with the BADA model, in ISA+20 atmospheric condition,

we find a fuel consumption of 1,075 kg, that is to say 1.68% of the initial mass, chosen

as the BADA reference mass.

Note that we do not try to adjust the thrust coefficients C = (c1, . . . , cn) here.

Assuming a constant mass m for the n considered points, we adjust m so as to minimize

the following mean square error, given the thrust settings (c1, . . . , cn):

Etraj(C,m) =
1

n

n∑

i=1

(
Poweri(m)

m
−Qi

)2

(19)
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Denoting Pi(m) the value at point i of the polynomial expression P given by equa-

tion (17), the error becomes:

Etraj(C,m) =
1

n

n∑

i=1

(
Pi(m)

m

)2

(20)

The minimum of Etraj must satisfy
dEtraj

dm = 0, which gives us the following equa-

tion, with P ′
i (m) the derivative of Pi(m) with respect to m:

n∑

i=1

Pi(m)[mP ′
i (m)− Pi(m)] = 0 (21)

This fourth-degree polynomial equation (21) is solved using Ferrari’s method. Among

the four potential solutions, we select the solution in ]0; +∞[ minimizing Etraj(C,m).

2.3. Equivalent Mass in the Case of a BADA Reduced Climb Power

We have seen how to estimate the mass at a given point (section 2.1) or using several

trajectory points (section 2.2) when the power is modeled as described in equation (13).

These methods can still be applied when assuming the BADA maximum climb, by

setting c = 1 in equation (18).

When considering the BADA reduced climb power, however, the expression of

P (m) is no longer the same. In this case, the power is given by PowerBADA, described

in the following equation (22), where Cpow, red is the BADA power reduction coefficient

depending on the mass and the maximum altitude Hmax (see [17]):

PowerBADA = Cpow, red(Thrmax climb −D)Va (22)

Using the BADA power reduction profile, we have the following equation for

P (m), which is still a polynomial function of the mass, as in section 2.1, but of the

3rd degree below 0.8Hmax, and of the 2nd degree above:

P (m) = PowerBADA −mQ

= Cpow, red(m)
[
−m2f3(Hp, Va,∆T,Φ)− f2(Hp, Va,∆T ) + f1(Hp, Va,∆T )

]

−mQ

(23)

The equivalent mass can still be found by solving the polynomial equation (21),

except that Pi(m) is of the 2nd or 3rd degree, depending on the altitude of the con-

sidered points. In our experiments, when estimating the equivalent mass of an Airbus

A320 using points below 18,000 ft and assuming a BADA reduced climb power, the

inequality Hp ≤ 0.8 Hmax(∆T,m) can reasonably be assumed to be true4. In that

case, Pi(m) in equation (21) is a third-degree polynomial.

In any case, we have a simple method to estimate an equivalent mass from a few

points of the trajectory, given the thrust law for these points.

4Numerical application sets 0.8Hmax at 19,144 ft for ∆T at 40K and m at 77,000kg.
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3. Learning the Thrust Law from Historical Data

We have seen in section 2 how to estimate the mass. Now, let us see how to learn the

thrust setting law, using a set of recorded trajectories and a regression method coupled

to our mass estimation method.

3.1. Discussion

We cannot infer both the mass and thrust setting law from equation (5) using only

the past trajectory of one given aircraft: Denoting Cpast = (c1, . . . , cn) the thrust coeffi-

cient for the past n points, there is an infinity of couples (Cpast,m) fitting the observed

energy rate perfectly. Intuitively, high thrust with a large mass m barely produces the

same amount of specific power
(cThrmax climb−D)Va

m as low thrust with a small mass m.

In a prediction context, we need to compute the specific power for the next p points,

which requires some assumptions on the future thrust settings (cn+1, . . . , cn+p). As

this data is not available to ground systems, it is usual to make an “educated guess”,

assuming maximum climb thrust or reduced power climb for example, and to estimate

an equivalent mass that is consistent with this choice, using the first trajectory points.

As an alternative to this method, we propose to learn an optimal thrust law from his-

torical data, choosing the law that minimizes the prediction error on a set of recorded

trajectories.

3.2. Learning a Thrust Law from Data

We are looking for a thrust setting law c = f(.|θ) that is common to all aircraft of

a same category. Given this law, the thrust setting coefficients Ck = (ck,1, . . . , ck,nk
)

for the nk points of a sampled trajectory k are given by the following expression (24),

with xk,i a vector of state variables measured at the ith point:

Ck(θ) = (f(xk,1|θ), . . . , f(xk,nk
|θ)) (24)

Considering a set of K trajectories taken from historical data, we are looking for a

value of θ that minimizes the overall quadratic error Etotal, as defined by the following

equations (25):

m∗
k(θ) = argmin

mk∈]0;+∞[

Ek(Ck(θ),mk) (25a)

Etotal(θ) =

K∑

k=1

Ek(Ck(θ),m
∗
k(θ)) (25b)

The optimal mass m∗ for any given θ is obtained by solving a polynomial equation

using Ferrari’s method, as presented in section 2.2.

In equations (25), Ek is the quadratic error for trajectory k, as given by equa-

tions (19) and (20) (see section 2.2). To be more explicit we can write Ek as follows:
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Ek(Ck,mk) =
1

nk

nk∑

i=1

(
Pk,i(ck,i,mk)

mk

)2

(26a)

Pk,i(ck,i,mk) = Powerk,i(mk)−mkQk,i (26b)

Powerk,i(mk) = (ck,iThrmaxclimbk,i −Dk,i)Vak,i (26c)

with Qk,i the value at point i of trajectory k of the quantity Q, the sum of the specific

energy rate and wind effect, defined by equation (16b). The maximum climb thrust

Thrmaxclimb is given by the BADA equations as a function of the vector of state vari-

ables xk,i. The drag D is also provided by the BADA model, as a function of xk,i and

mk.

An iterative quasi-Newton method (BFGS) is used to find a vector θ∗ minimizing

Etotal(θ). The BFGS method (Broyden-Fletcher-Goldfarb-Shanno, from the names of

its authors) approximates the Hessian matrix at each iteration, using the gradient of the

error function ∇Etotal. The reader may refer to [20] for further details on the method.

The gradient of the error can easily be computed in our problem. The partial deriva-

tive of the error on trajectory k with respect to one parameter θj of vector θ is the

following, considering that ∂Ek

∂m (Ck,m
∗
k) = 0, by definition of m∗

k:

∂Ek
∂θj

(θ) =
∂Ek
∂m

(Ck,m
∗
k)

∂m∗
k

∂θj
+

nk∑

i=1

∂Ek
∂ck,i

(Ck,m
∗
k)

∂ck,i
∂θj

=

nk∑

i=1

∂Ek
∂ck,i

(Ck,m
∗
k)

∂fk,i(xk,i|θ)
∂θj

(27)

Using the equations (26a) defining Ek and the above equation (27), we find the

following expression for the partial derivative:

∂Ek
∂θj

(θ) =
2

nk

nk∑

i=1

(
Pk,i(m

∗
k)

m∗
k

Vak,iThrk,i

m∗
k

∂f(xk,i|θ)
∂θj

)

(28)

Finally, the components of the overall gradient vector ∇Etotal are the following:

∂Etotal

∂θj
(θ) =

K∑

k=1

∂Ek
∂θj

(θ) (29)

Equations (25) and (29) are applied on a set of recorded trajectories to compute

the total error and its gradient. Using these two functions of θ, the BFGS method

finds the vector of adjusted parameters θ∗ minimizing Etotal(θ). At each step of the

BFGS search, the mass estimation method presented in section 2.2 is used to find the

optimal masses (m∗
1(θ), . . . ,m

∗
K(θ)) corresponding to the candidate vector θ being

evaluated. At the end of the search, we have the optimal θ∗ and the optimal masses

(m∗
1(θ

∗), . . . ,m∗
K(θ∗)) for the chosen trajectory set.

The learning phase described above provides us with a thrust setting law f(.|θ∗)
which can then be used for prediction purposes on fresh trajectories. If the sample of
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historical data used for learning is sufficiently representative of the actual traffic (as we

hope it is), the proposed method will generalize well when applied to prediction. The

learned thrust law may not actually reflect the actual thrust settings of each individual

aircraft, but it is designed so as to improve the predicting performance when coupled

with the equivalent mass estimation method described in section 2.2.

The choice of the parametric function f for the thrust law is not discussed here. We

have chosen a simple fourth-degree polynomial function of the pressure altitude Hp,

as a proof of concept. Experimenting different choices for f could be the subject of

future works.

4. Using the Inferred Mass and Thrust Law for Prediction Purposes

Predicting the future trajectory of a climbing aircraft with the mass estimation

method presented in section 2.2 and the thrust law learned from historical data is quite

straightforward. Let us assume that we have observed n points of the past trajectory,

with one point every δt seconds, and that we want to predict the next p points of the

future trajectory.

The thrust setting coefficients c1, . . . , cn for the past n points are computed using

the thrust law f(.|θ∗) learned from historical data (see section 3.2). Knowing the values

of the state variables x
(obs)
i (air temperature, aircraft altitude, velocity, etc.) for the past

trajectory, the coefficients are simply ci = f(x
(obs)
i |θ∗), for all i ∈ {1, . . . , n}. The

equivalent mass m is then estimated from the past trajectory, using these thrust setting

coefficients and the method presented in section 2.2.

Computing the thrust settings (cn+1, . . . , cn+p) for the next p points is more diffi-

cult, as we need the predicted values of the state variables (x
(pred)
n+1 (m), . . . , x

(pred)
n+p (m)).

This requires to integrate equation (9) over the time interval [tn, tn+p]. Equation (10)

shows the mathematical form of this integral of the ESF and specific power. In gen-

eral, this equation cannot be solved analytically, and numerical methods must be used.

Using for example the Euler method with a time step δt (or Runge-Kutta methods),

we can compute the successive values of the predicted state variables and thrust setting

coefficients.

5. Data and Experimental Setup

5.1. Data Pre-processing

Recorded radar tracks from Paris Air Traffic Control Center are used in this study.

This raw data is made of one position report every 1 to 3 seconds, over two months

(July 2006, and January 2007). In addition, the wind and temperature data from Météo

France are available at various isobar altitudes over the same two months.

The pressure altitude is reported by increments of 100 ft ([21]) by the Mode-C

radars. A local quadratic model is used to smooth our raw data. After smoothing,

the basic trajectory data is made of the following fields: aircraft position (X ,Y in a

projection plan, or latitude and longitude in WGS84), ground velocity vector Vg =
(Vx, Vy), smoothed altitude (Hp, in feet above isobar 1,013.25 hPa), rate of climb or

14



descent
dHp

dt . The wind W = (Wx,Wy) and temperature T at every trajectory point

are interpolated from the weather datagrid. The temperature differential ∆T , which

is the difference between the actual temperature and the temperature given by the ISA

model, is computed at each point. This ∆T is one of the key parameters in the BADA

model equations.

Using the position, velocity and wind data, we compute the true airspeed Va, the

distance flown in the air, the drift angle, the along-track and cross-track winds (Walong
and Wcross). The successive velocity vectors allow us to compute the trajectory cur-

vature at each point. The aircraft bank angle is then derived from true airspeed and the

curvature of the air trajectory. The climb, cruise, and descent segments are then identi-

fied, using triggers on the rate of climb or descent to detect the transitions between two

segments.

5.2. Filtering and Sampling Climb Segments

To demonstrate the performance of the proposed method, we focus on a single

aircraft type (Airbus A320). Our dataset comprises all flights of this type departing

from Paris-Orly (LFPO) or Paris-Charles de Gaulle Airport (LFPG). Of course, this

approach can be replicated to other aircraft types and airports, and to more specific

categories of climbs (e.g. per airline, per departure procedure, etc.) provided sufficient

data can be collected.

The trajectories are filtered so as to keep only the climb segments. An additional

80 seconds is clipped from the beginning and end of each segment, so as to remove

climb/cruise or cruise/climb transitions.

The trajectories are then sampled every 15 seconds so that the time t0 of the “cur-

rent” position corresponds to the crossing of altitude 18,000ft. The 10 points before

t0 represent the “past trajectory”, below FL180. The 40 points after t0 represent the

“future” trajectory (10 minutes ahead t0). The first 11 points (current point and past

trajectory) are used to estimate the equivalent mass. The remaining points (future tra-

jectory) are used to compute the error between the predicted and actual energy rate.

5.3. Two Case Studies, and Cross-validation

As we have seen in section 1.3, predicting the future trajectory does require some

knowledge of the law governing the Energy Share Factor (ESF). Learning the ESF law

is not the subject of the work presented here, so in the following, we will either assume

that the ESF is perfectly known, or make basic assumptions on the ESF law.

In our experiments, the prediction error of the proposed method is evaluated on

two datasets, with two ways to obtain the ESF law. In the first case study, we use

all the trajectories of our dataset (5,167 trajectories), and we look at the error on the

energy rate prediction, assuming that the ESF law is perfectly known. In the second

case study, we assume a CAS/Mach climb to compute the ESF, and evaluate the overall

performance of the trajectory prediction. In this case, as we have only Mode-C, and

not Mode-S radar data that would contain the Calibrated Airspeed (CAS) and Mach

number, we simply select the trajectories exhibiting a consistent CAS/Mach profile

from our initial dataset.
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In both case studies, a ten-fold cross-validation is performed. The set of trajectories

is split in ten folds of equal size. Nine folds are grouped together and used as the

training set in order to learn the thrust law f(.|θ∗). The remaining fold is used as a

validation set, to evaluate the prediction performance. The operation is repeated ten

times, choosing a different fold as the validation set, in order to cover all possible

combinations of couples (training set, validation set).

5.4. Different Settings Compared

Our prediction method uses one estimated mass mestimated per individual aircraft

(see section 2.2) and a common thrust law f(.|θ∗) learned on the training set (see sec-

tion 3.2). In order to evaluate the performance of the proposed method, it is compared

with other model-based prediction methods relying on the BADA model. The BADA

methods use a single reference mass for all aircraft of the same type, and either the

BADA maximum climb thrust (BADAmax climb) or the BADA power reduction profile

(BADAreduced), as given by equation (22).

The effects of mass estimation and thrust/power law can be evaluated independently

by considering all possible combinations of mass and thrust/power law. The possible

choices for the law governing the thrust (or the power for BADAreduced) during climb

are summarized in table 1.

Name Description

BADAmax climb Power = (Thrmax climb −D)Va

BADAreduced
Power = Cpow, red(Thrmax climb −D)Va

Cpow, red is the power reduction coefficient given by [17]

Thrust law f(.|θ∗) Power = (f(x|θ∗)Thrmax climb −D)Va

f(.|θ∗) is the thrust law learned on the training set (see section 3.2)

Table 1: Possible laws governing the thrust or power during climb

Concerning the mass, we could just compare the performances given by the es-

timated mass mestimated with the performances obtained when using the reference

BADA mass mBADA, which is the usual way to proceed. To be more fair, we have also

compared with another mass mopt, also common to all aircraft but chosen so as to

minimize the altitude prediction error on the training set. The mass mopt minimizes

the root mean square error on the pressure altitude Hp(51) at the last trajectory point,

considering all trajectories in the training set. The possible choices for the mass setting

are summarized in table 2.

In our experiments, we compare our method combining mestimated and the learned

thrust law f(.|θ∗) with the six different methods obtained by combining a mass (mBADA,

mopt, or mestimated) and a standard thrust/power law (either BADAmax climb or BADAreduced).

The performances of the seven methods are assessed on the two case studies described

in section 5.3, applying a ten-fold cross-validation. Section 6.3 shows the results (mean

value and standard deviation) over the ten runs. Before comparing the seven methods,

let us see a few results on the distribution of the estimated masses, and on the learned

thrust law.
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Name Description

mBADA m = mBADA(A320) = 64,000kg

mopt m = argmin
m∈]0;+∞[

K∑

k=1

(

Hp
(obs)
(51) −Hp

(pred)
(51) (m)

)2

mestimated mk = argmin
m∈]0;+∞[

11∑

i=1

(
Pk,i(m)

m

)2

Table 2: Possible choices for the aircraft mass

6. Results

6.1. Estimated mass
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(a) Case study 1, all the trajectories
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(b) Case study 2, CAS/Mach trajectories

Figure 4: Distributions of mestimated for the three thrust profiles (BADAmax climb,

BADAreduced, f(.|θ∗)) and for the 10 training sets of the cross-validation.

Figure 4 plots the distributions of the estimated masses for the two case stud-

ies, and for the three possible laws governing the thrust (or the power in the case of

BADAreduced) during the climb. We have plotted 10 curves per thrust law, correspond-

ing to the 10 training sets of the cross-validation.

We can see on this figure that the curves of a same thrust law are quite similar.

The range of the estimated masses seems quite large for all distributions. The mean

values differ from one law to another, which was to be expected as different laws lead

to different thrust settings (or reduced power) coefficients and different masses: the

higher the thrust setting, the higher the estimated mass.

We cannot compare the estimated masses with the actual aircraft masses, as the

latter are not available to us. Therefore, we cannot say which combination of mass
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estimation method and thrust law provides the most realistic mass distribution. This

is not an issue for our problem, however, as we estimate an equivalent mass meant

to provide an accurate computation of the specific power, when associated with the

adequate thrust law.

6.2. Thrust law
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(a) Case study 1, all the trajectories
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(b) Case study 2, CAS/Mach trajectories

Figure 5: The learned thrust law f(.|θ∗), for the 10 training sets of the cross-validation.

Figure 5 displays the thrust laws learned on the ten training sets while performing

the cross-validation. The thrust profile is very similar for all the training sets. For the

case study with all the trajectories (left picture), the thrust setting globally increases

with the pressure altitude Hp from 0.96 to 1.04. For the CAS/Mach trajectories (right

picture), the thrust setting oscillates between 0.90 and 0.95, with a noticeable peak at

the CAS/Mach crossover altitude.

6.3. Overall Prediction Performance

For a given trajectory, the prediction performance is evaluated by measuring the

error between the predicted and observed values at equal times, for the p points of the

future trajectory. More explicitly, the prediction error over the p future points of a given

trajectory k is assessed by measuring e
(pred)
k =

√
Ek, with Ek given by equation (26),

using the predicted state variables to compute the specific power. This quantity can be

written as follows:

e
(pred)
k =

√
√
√
√
√
√
√
√

1

p

p
∑

i=1








Power(m∗
k, c

(pred)
k,i )

m∗
k

︸ ︷︷ ︸

computed

− Q(x
(obs)
k,i )

︸ ︷︷ ︸

observed at point i








2

(30)
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Thrust/power law Mass e
(pred)
k p-value ∆Hp ∆Va

BADAmax climb mBADA 10.5 (0.26) 1.78e-227 1223 (41) 6.51 (0.52)

BADAmax climb mopt 10.5 (0.29) 4.65e-234 1203 (46) 6.61 (0.57)

BADAmax climb mestimated 9.2 (0.4) 9.71e-04 895 (60) 6.02 (0.35)

BADAreduced mBADA 11.1 (0.23) 4.2e-280 1352 (37) 6.91 (0.39)

BADAreduced mopt 10.5 (0.28) 7.57e-219 1198 (45) 6.63 (0.54)

BADAreduced mestimated 9.26 (0.4) 3.35e-96 909 (94) 6.01 (0.46)

thrust law f(.|θ∗) mestimated 9.03 (0.38) - 824 (84) 5.83 (0.5)

(a) Case study 1, all the trajectories and observed ESF (A320 climbs departing from Paris).

Thrust/power law Mass e
(pred)
k p-value ∆Hp ∆Va

BADAmax climb mBADA 9.51 (0.25) 1.18e-155 1515 (58) 4.34 (0.23)

BADAmax climb mopt 9.57 (0.21) 1.29e-160 1487 (44) 4.04 (0.22)

BADAmax climb mestimated 7.78 (0.32) 3.63e-63 1049 (80) 4.1 (0.14)

BADAreduced mBADA 10.1 (0.34) 2.68e-172 1708 (78) 4.99 (0.24)

BADAreduced mopt 9.51 (0.22) 5.63e-153 1490 (45) 4.05 (0.23)

BADAreduced mestimated 7.87 (0.37) 9.91e-64 1040 (81) 3.9 (0.14)

thrust law f(.|θ∗) mestimated 7.41 (0.3) - 885 (74) 3.62 (0.14)

(b) Case study 2, CAS/Mach trajectories and computed ESF (A320 climbs departing from Paris).

Table 3: Mean values (and standard deviations, within brackets) of the Root Mean

Square Errors for e
(pred)
k , ∆Hp and ∆Va. P-values for the Wilcoxon signed-rank test

on e
(pred)
k , when comparing with the last method.
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with m∗
k the mass of aircraft k estimated on the n past and current points (n = 11 in

our experiments). c
(pred)
k,i is the thrust setting coefficient at the ith predicted point, and

Q(x
(obs)
k,i ) the observed energy rate and wind effect at the ith actual point:

c
(pred)
k,i = f(x

(pred)
k,i |θ∗) (31a)

Q(x
(obs)
k,i ) =

[

Va
dVa

dt
+ g0

(
T

T −∆T

)
dHp

dt
+

d
−→
W

dt
.
−→
Va

]

k,i

(31b)

In the above equation (31a), f(.|θ∗) is the thrust law learned on the training set, and

x
(pred)
k,i is the vector of state variables (position, velocity, acceleration, etc.) predicted

for the ith point of predicted trajectory k.

For a set of trajectories, the overall error on the specific power prediction is assessed

by computing the root mean square error (RMSE) of e
(pred)
k . This RMSE is computed

for the seven chosen combinations of mass and thrust law (see section 5.4), and for

the two datasets of the case studies presented in section 5.3. For each fold of the

cross-validation, the error is measured over the validation set only, using the thrust law

learned on the training set.

The mean values and standard deviations (within brackets) of RMSE(e
(pred)
k ) are

presented in tables 3a and 3b, together with the p-values of a Wilcoxon signed-rank

paired test comparing our method (last row) to each of the BADA methods. The same

table also gives the mean values and standard deviations of the RMSE of ∆Hp and

∆Va, the altitude and velocity errors, respectively, at the last point of the predicted

trajectory (10 minutes ahead).

We see on tables 3a and 3b that the methods using the estimated mass mestimated
have lower root mean square errors when compared with the ones using constant

masses (mBADA or mopt). So, whatever the chosen thrust/power profile, estimating an

individual mass for each aircraft is better than using a common mass, even when this

single mass is optimized for the given prediction purpose.

Let us remind that the aim of case study 1 (all trajectories and observed ESF) is to

compare the prediction performance on the energy rate only, assuming that the Energy

Share Factor is perfectly known. So, in table 3a, we are mostly interested in comparing

the errors on e
(pred)
k . The errors on ∆Hp and ∆Va are given as indications. They are

not representative of what could actually be obtained in an operational context, when

using an ESF law that can differ from the observed ESF.

The case study 2 (CAS/Mach trajectories and computed ESF), on the contrary, is

more representative of what could be obtained in a real context, assuming the target

CAS and Mach number to be known (i.e. transmitted by the aircraft via datalink). We

use the computed values of the Energy Share Factor that correspond to the target CAS

and Mach number.

Our method combining the estimated mass mestimated with the adjusted thrust law

f(.|θ∗) performs best among the seven tested methods. The statistical significance of
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our results is assessed by performing a Wilcoxon signed-rank test5. This choice is

relevant because all methods are evaluated on a same dataset (split in ten folds), so we

have paired samples: we compare two predictions made with two different methods,

for a same flight. Using a directional test, the null hypothesis (H0) is that the median of

the difference between the two predictions (with our method and the other) is positive,

meaning that our method performs equally or worse than the other. The alternative

hypothesis (H1) is that the median of the difference is strictly negative, meaning a better

performance of our method. The fourth column of tables 3a and 3b shows the p-values6

for this test. Comparing with the standard threshold of 0.05 for a 95% confidence

interval, we can reject H0 and accept H1 as true in all cases.

Let us now look at the altitude prediction, focusing on case study 2 (table 3b).

Looking at the altitude error ∆Hp in table 3b, we see that our method (last row of

the table) reduces the root mean square error by nearly 40% when compared with the

standard BADA maximum climb with the reference mass mBADA (first row). When

comparing with the BADA reduced climb power (third row), the altitude error is re-

duced by nearly 50%.

6.4. Altitude Prediction Errors at Various Future Times
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(a) With BADAmax climb and mBADA.
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(b) With the inferred mass mestimated and

learned thrust f(.|θ∗).

Figure 6: Altitude errors (case study 2) for future times from 15 s to 10 mn.

Figure 6 shows the boxplots of the altitude errors at various future times, from

the first predicted point 15 seconds ahead to the last one 10 minutes ahead, using the

5We have used the wilcox.test provided by the R environnment, with the paired option.
6The p-value is the probability to be wrong when accepting H1 and rejecting H0.
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standard BADA maximum climb (left figure) or our method (right figure). For each

look-ahead time in figure 6, the central box represents the 0.25/0.75 interquartile dis-

tance, and the whiskers are defined so that the lower one leaves 5% of the data below

it, and the upper one leaves 5% above.

We can see that the boxes and whiskers are much narrower and better centered

around zero with our method than whith the standard BADA method. When using the

inferred mass and learned thrust law, the altitude prediction is statistically better at all

predicted times.
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Figure 7: Empirical cumulative distribution of the altitude errors 10 minutes ahead,

for the BADA model (blue dotted curve) and our method (red solid curve).

The kurtosis excess7 for the results of our method is 6.21, indicating that this distri-

bution is more fat-tailed than the normal one. The distribution obtained with the BADA

method, with a kurtosis excess of 0.10, is much closer to the normal distribution. Nev-

ertheless, our method remains significantly more accurate than BADA, as long as one

does not require a confidence interval very close to 100%: As can be seen on figure 7,

the empirical cumulative distribution function of our method is above the BADA one.

Thus, when looking for a centered interval containing x% of the data, our method will

always give a smaller interval than the BADA method.

As can be seen on figure 6, the error range of the predictions falling outside the

central cone delimited by the whiskers remains important: Even if the overall perfor-

mance of our method is better than the BADA method, it could still be improved for a

7Computed using kurtosis(...,type=1) of the R package ’e1071’
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number of specific flights. This suggests that learning several thrust laws for identified

classes of climbs, instead of only one for all climbs, might improve the results again.

6.5. Assessing the Quality of Prediction from the Error on the Past Trajectory
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(a) Case study 1, ∆Hp against e
(past)
k .
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(b) Case study 2, ∆Hp against e
(past)
k .
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(c) Case study 1, ∆Va against e
(past)
k .
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(d) Case study 2, ∆Va against e
(past)
k .

Figure 8: Relationship between e
(past)
k and the altitude and velocity errors at the last

point of the prediction.

When using the prediction model in an operational context, the future trajectory is

yet unknown, and e
(pred)
k is not available in real time. However, the model error on the
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n past and current points can be computed, and might give us some clues on the quality

of the prediction on ∆Hp and ∆Va.

The expression of e
(past)
k is similar to the prediction error e

(pred)
k , except that the

thrust coefficients are computed using the observed values x
(obs)
k,i of the past n points

instead of the predicted values x
(pred)
k,i of the p future points:

e
(past)
k =

√
√
√
√
√
√
√
√

1

n

n∑

i=1








Power(m∗
k, c

(obs)
k,i )

m∗
k

︸ ︷︷ ︸

computed

− Q(x
(obs)
k,i )

︸ ︷︷ ︸

observed at point i








2

(32)

Figure 8 plots the altitude error ∆Hp and velocity error ∆Va against e
(past)
k . We

can observe a higher dispersion of the plots on the right-hand side of the figures. Glob-

ally, we have higher errors on the altitude and velocity when the model error on the past

trajectory points e
(past)
k is high. Notice that this is not always true, however: There are

a few trajectories with low errors on e
(past)
k that exhibit high errors on the altitude and

velocity. Trajectories with low model error on the past points are just more likely to

have low errors on the predicted altitude and velocity.

As an illustration, let us focus on the trajectories of case study 2 (CAS/Mach tra-

jectories and computed ESF). On these trajectories, the median of e
(past)
k is 6.6W/kg.

If we compute the root mean square error of ∆Hp on the trajectories for which e
(past)
k

is inferior to the median, we obtain 532 ft. Similarly, if we compute the RMSE on the

trajectories with e
(past)
k superior or equal to the median, we obtain 1044 ft.

To conclude this section, we have an empirical assessment of the quality of the

prediction for each individual trajectory simply by considering the model error on the

past points. If the model performs poorly on the past points, it is more likely to provide

poor predictions on the future points as well.

Conclusion and future work

To conclude, we propose to improve the trajectory prediction accuracy performed

by ground-based systems by inferring the mass and thrust law from observed data.

These two parameters, mass and thrust, are crucial in the trajectory prediction of climb-

ing aircraft. The aircraft mass is estimated from a few points of the past trajectory and

the thrust law is learned from from a training set of trajectory records. Although they

might not be close to the actual mass and thrust law of each individual aircraft, the

modeled mass and learned thrust are designed so as to improve the accuracy of the

modeled energy rate.

The proposed mass estimation method takes advantage of the fact that the specific

power is a polynomial function of the mass when using the BADA model of the drag

and maximum climb thrust. Other models of the forces, more precise than BADA,

might be compliant with our approach. For instance, the Enhanced Jet Performance

Model ([22]) seems to be compliant with our analytical method.
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Our method highly improves the trajectory prediction accuracy when compared

with BADA model-based methods that use a single common mass per aircraft type

or a standard thrust profile. When tested on real data, for a single aircraft type as a

proof of concept, it improves the altitude prediction up to 40 to 50 percent. We also

show that the model error on the past trajectory can provide an empirical assessment

of the future prediction’s quality. From an operational point of view, the enhancement

of the altitude prediction accuracy would certainly benefit to the air traffic controllers

in the vertical separation task, and give more accurate inputs to the automated tools for

conflict detection and resolution.

In future works, it could be interesting to try our method on Mode-S radar data,

which is more accurate than Mode-C radar data, and for which the calibrated airspeed

and Mach number of the equipped aircraft is available. In addition, we intend to com-

pare our analytical mass estimation method with the adaptive method proposed in [13]

on our set of real data.

There are several ways in which our method might be improved. For example, we

might try to identify classes of trajectories from the historical data, and then learn sev-

eral thrust laws (one per class) instead of only one. When predicting a new trajectory,

the past points would then be used to select the most relevant thrust law. We could also

study different parametrized functions modeling the thrust law: other functions, such

as neural networks, might give better results than the simple polynomial functions used

in the current paper. Finally, we also plan to compare our model-based approach that

uses learned parameters with standard Machine Learning techniques (e.g. Neural Net-

works, Random forests, etc.) that would use the estimated mass and past observations

as inputs.
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