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Abstract: Conflict resolution has always been a sensitive matter in air-traffic management. Current European projects

aim partial or total automation of air traffic control to deal with the constant growth of air traffic. Techno-

logical advances on flight management system allows us to consider an automatic conflict resolution using

continuous trajectories. In this paper, we present a new methodology that, first, relies on B-splines to model

trajectories, secondly models air-traffic conflict resolution as an optimization problem whose decision vari-

ables are the spline control points. Finally, we use genetic algorithms to tackle this optimization problem in

order to generate optimal conflict-free situations.

1 INTRODUCTION

From the beginning, the most critical point of air traf-

fic control was to ensure safety separation between

airplanes. To achieve this goal a safety standard sep-

aration distance has been defined: 5 Nm (Nautical

miles) horizontally and 1000 feet vertically. Air traf-

fic controllers are responsible for ensuring the respect

of these separation rules.

1.1 Context

Air traffic being constantly increasing, controllers

in charge of an aviation sector must handle more

and more flights. Up to now, decreasing the size

of aviation sectors could compensate the growth of

traffic but we are reaching the point where a decrease

of the size of sectors is no longer efficient.

Nowadays, air traffic management has already

used every available ressource to increase airspace ca-

pacity. However, from now to 2020, air traffic is ex-

pected to be multiplied by two or three. Consequently,

air traffic management (ATM) will have to deal with

this overload while ensuring at least equivalent stan-

dards of safety (Alliot and de Verdière, 2003). The

SESAR European project aims at finding solutions

to this problem by providing a decision support to

air traffic controllers in order to decrease their work-

load. Considering the technological advances on the

aircraft flight management system (FMS), we will ex-

plore in this paper the possibility of a full automation

generating continuous trajectories that new FMS can

follow.

1.2 Previous Related Work

By the past, two kinds of method have become pre-

dominant in automatic air traffic conflict resolution

for their good results : genetic algorithms (GA)

(Durand, 2004) and navigation functions (Zeghal,

1994).

Genetic algorithms are part of what is known as

natural computation or evolutionary methods. This

optimization method is based on the evolution theory

and uses concepts such as mutation, crossover and,

of course, selection. Each possible solution of our

optimization problem is encoded as a chromosome

via a specific encoding (for example, number and

duration of simple maneuvers). The algorithm cre-

ates randomly a first chromosome population. Each

chromosome ability to solve the problem (fitness) is

then evaluated. The best individuals (according to



their fitness) are selected and mutation, crossover are

applied to obtain a new population of chromosome

(next generation). The user chooses the necessary

generation number for the algorithm to converge (this

choice is usually done empirically).

The obtained trajectories’ velocity stays within

acceptable bounded range with respect to ATM

operational constraints. However, these techniques

have not been tested yet with curved trajectories.

Navigation functions use a different representa-

tion. Indeed, the airspace is considered as a poten-

tial field, and airplanes like particles navigating in it.

Naturally, negative charges represent obstacles to the

airplane (other aircrafts, congested areas) and positive

charges, its destination. As a result, each airplane is

attracted to its destination while being repulsed by ob-

stacles which enables to the automatic generation of

conflict-free trajectories.

Figure 1: Principle of navigation functions between two air-
crafts (left), between an aircraft and an obstacle (right)

It has been demonstrated that navigation function

methods ensure collision avoidance and connection

between departure and destination. The major

drawback of this method is that the obtained solution

does not respect the ATM constraints such as limited

speed, or trajectory smoothness. Evenmore, they can

lead to major delays and overcosts as they tolerate

any deviation from the business trajectories (BT :

the straight line between the departure and arrival

points).

In this paper, we present a new methodology

that, first, relies on B-splines to model trajectories,

secondly models air-traffic conflict resolution as an

optimization problem whose decision variables are

the spline control points. Finally, we use genetic

algorithms to tackle this optimization problem in

order to generate optimal conflict-free situations.

We present our trajectory model in Section 2. Sec-

tion 3 presents the optimization method we chose to

solve our optimization problem: genetic algorithms

(GA). We detail in Section 4 the objective function

(conflict detection) of our optimization problem. Nu-

merical results are presented in Section 5. We draw

conclusions in Section 6.

2 TRAJECTORY MODEL

B-spline was primarily introduced to find a curve in-

terpolating a set of points of R2 called control points.

It was later extended to approximation, thereby avoid-

ing the undesirable oscillation inherent to interpola-

tion. In our study, we shall focus on this use of splines

to approximate a set of control points. The control

polygon, the piecewise linear curve linking the control

points, completely defines the curve (Rabut, 2008).

Basically, B-splines are parameterized curves gen-

eralizing the Bezier curve concept. It is an efficient

approximation tool which is constructed from poly-

nomial pieces joined at certain parameter’s values

called knots, stored in a knot vector. In a very sim-

plified way, if we consider a set of control points

(Xi,Yi) = Pi ∈ R2(i = 0,1, ...,n), and a parameter u,

we can define the B-spline as follows :

C(u) = (σx(u),σy(u)),u ∈ [a,b]

where σx(u) and σy(u) are the B-splines approxi-

mations of the couples (i,Xi)i=0:n and (i,Yi)i=0:n for

u ∈ [a,b] .

Theoritically, the curve is calculated by multiply-

ing the B-splines basis functions by the control points

coordinates. For σx:

σx(u) =
n+1

∑
i=−1

XiBi(u) (1)

However, in practice, Bi construction is made by re-

currence. Consequently, we used a more numerically

convenient way to calculate the B-spline values only

using control points values. The B-spline and its

derivative values at knot ui are defined by :

σi =
Xi+1+4Xi+Xi−1

6

σ′
i =

Xi+1−Xi−1

2h

σ′′
i =

Xi+1−2Xi+Xi−1

h2

σ′′′
i =

Xi+2−3Xi+1+3Xi−Xi−1

h3

(2)



Therefore, by using Taylor series, we obtain the B-

spline value for all u ∈ [ui,i+1 ] :

σx(u)= σxi
+(u−ui)(σ

′

xi
+(u−ui)(

σ′′
xi

2
+(u−ui)

σ′′′
xi

6
))

(3)

We choose to rely on B-spline modeling trajectories

because it is a very efficient tool for curve approx-

imation in terms of both approximation quality and

computational time. Moreover, B-splines feature in-

teresting properties such as C 2-continuity (crucial for

modeling smooth aircraft trajectories), robustness and

flexibility (if one control point is displaced, only a

small part of the curve will be affected). The last

good point in favor of B-splines is its compatibility

with GA : the curve is completely determined by few

control points only, which will be the optimization pa-

rameters of the GA. In our study, we use a fixed max-

imal number of control points between the departure

and the arrival points.

3 OPTIMIZATION METHOD

When several aircraft are involved in a conflict, the

conflict resolution problem has been shown to be NP-

hard (Durand, 2004). Moreover, the optimization

variables being the B-splines control-point location,

we shall see that our objective function (4) is not

differentiable with respect to these variables. Con-

sequently, we must rely on black box (direct) opti-

mization methods to address our problem. In this pa-

per, we choose to use a stochastic global optimization

method, genetic algorithms, to guide the control-point

location. As we mentioned in the previous part, GA

seem to be appropriate with B-splines. In this section,

we explain briefly GA theory and then we shall detail

how we adapt the different operators (selection, muta-

tion and crossover) to our air traffic conflict resolution

problem.

3.1 Basis of Genetic Algorithms

Evolutionary algorithms use techniques inspired by

evolutionary biology such as inheritance, mutation,

natural selection, and recombination (or crossover) to

find approximate solutions to optimization problems

(Goldberg, 1989), (Koza, 1992). An individual, or so-

lution to the problem to be solved, is represented by

a list of parameters, called chromosome or genome.

Initially several such individuals are randomly gener-

ated to form the first initial population (POP(k) with

k = 0 on Figure 2). Then each individual is evaluated,

and a value of fitness is returned by a fitness function

(generally, the objective function of our optimization

Figure 2: Genetic algorithm with tournament selection. The
first step consists in the selection of the best individuals
from population POP(k). Afterwards, recombination op-
erators are applied in order to produce the POP(k +1) pop-
ulation.
problem). This initial population undergoes a selec-

tion process which identifies the most adapted indi-

viduals. The selection process which has been used in

our experiments is a deterministic (λ,µ)-tournament

selection. This selection begins by randomly select-

ing λ individuals from the current population POP(k)

and keeps the µ bests (λ > µ). These two steps are re-

peated until a new intermediate population (POPi) is

completed. Following selection, one of the three fol-

lowing operators is applied : nothing, crossover, and

mutation. The associated probability of application

are respectively (1− pc − pm)), pc and pm. Crossover

results in two new child chromosomes, which are

added to the next generation population. The chro-

mosomes of the parents are mixed during crossover.

These processes ultimately result in the next gener-

ation population of chromosomes (POP(k+1) on Fig-

ure 2) that is different from the initial generation. This

generational process is repeated until a termination

condition has been reached. The next section presents

the application of this algorithm to our specific prob-

lem.

3.2 Chromosome Encoding and Fitness

Calculus

In this section we detail the link between our mod-

eling method and genetic algorithms. Indeed, our

optimization method is using B-splines to calculate

the aircraft trajectories in order to determine each

individuals fitness. To define this interaction, we first

define an encoding.

A chromosome will represent the trajectories of

N aircrafts using a matrix of N ×Nc where Nc is the

maximal number of control points we wish to con-

sider. For example, the case where N = 20 airplanes

and Nc = 2 we encode the trajectories as follows :



Airplane1 P1
1 P1

2

Airplane2 P2
1 P2

2

... ... ...

Airplane19 P19
1 P19

2

Airplane20 P20
1 P20

2

Obviously, departure and arrival points are not

encoded in the chromosome as they are not meant to

move, they are not optimization variable.

Let us now define precisely how we specify the

control points P
j

i . We want a compromise between

allowing the trajectory to deviate freely (in any

directions) from the business trajectory (BT) and

staying as close as possible from it. For that purpose,

we define a fixed width band (Dmax), depending on

the BT length (Dtot ), around the BT trajectory where

the control points are allowed to lie.

A matter for the control point location is that, if

there are all gathered in the same region, it can create

oscillations on the resultant trajectory. Consequently,

we distribute uniformly the control points along the

BT.

To summarize, a control point can be defined

by a single parameter representing a bandwidth

percentage (± d
Dmax

% ).

Moreover, it is desirable to be able to have

a different number of control points for a given

chromosome. In order to satisfy this goal, we

used a convention: percentage are generated within

[−200%;200%], if the percentage is between −100%

and 100%, then we create a control point, if it

belongs to [−200%;−100%[∪[100%;200%], we do

not. Consequently, our chromosome is a N × Nc

matrix of percentage. Several cases are presented in

Figure 3 and 4.

Figure 3: Chromosome encoding and corresponding B-
spline with one percentage exceeding 100%

3.3 Crossover and Mutation

Let us now describe how we adapted the genetic op-

erators we use in our GA.

Figure 4: Another chromosome encoding and its
corresponding B-spline with both percentages within
[−100%,−100%]

3.3.1 Slicing crossover

The crossover operator aims at finding better solu-

tions by mixing two good individuals of the previ-

ous generation. Therefore, we decide to keep trajec-

tory consistencies by inverting only complete trajec-

tories using a slicing crossover (we do not separate

control points belonging to the same trajectory). Ac-

cordingly, the crossover consists in picking a plane

number randomly and inverting the parent trajecto-

ries corresponding to the next aircrafts. An example

is given in Figure 5 :

Figure 5: Parent and children chromosomes

3.3.2 Mutation

The mutation operator aims at diversifying the

genes in the population in order to explore as much

as possible the problem space. Thus, mutation

consists in choosing randomly one control point in

the chromosome and to assign to it a new random

number (using a uniform distribution) in the interval

[−200%;200%]. (see Figure 6).



Figure 6: Initial and mutated chromosome

4 OBJECTIVE FUNCTION :

CONFLICT DETECTION

METHOD

In order to evaluate each chromosome fitness, we de-

code it into N trajectory curves (one per aircraft) and

evaluate two quantities. First, how many conflicts the

situation engenders and secondly what is the total ex-

tra distance induced with respect to the BT. To cal-

culate these quantities, we discretize the airspace into

square cells of size half the standard separation (noted

d). Our conflict detection is performed in two steps :

• First, for each airplane, we store the grid’s cells

through which the aircraft flies, the aircraft num-

ber (its label), the entry and exit times in and out

each of the stored cell,

• Then, we select each stored cell and we check

whether any other airplane goes through any of

the eight neighboring cells for other airplanes. If

there are such airplanes, we check the time to see

whether there is a conflict between these two air-

planes. If so, we calculate the conflict duration.

Our conflict detection procedure send back the

chromosome fitness to the GA. Here is the formula

we use to calculate the fitness:

f (X) = −(CN +(
N

∑
i=1

NRi

BTi

−N)) (4)

where CN is the number of conflict, NRi the length

of the new route calculated by the algorithm for

the aircraft i, while BTi the length of the business

trajectory (straight line from the departure to the

arrival point) and N the number of aircraft. High

fitness corresponds to good individuals. Indeed,

the lower are the number of conflict and the route

lengthening, the better is the chromosome.

5 RESULTS AND PERSPECTIVES

In this section, we present several results we obtained

using our methodology. First, we test our method on

the roundabout test problem which is a very common

test on automatic conflict-detection method. It con-

sists in making a certain number of planes fly to the

diametrically opposed point at a common speed (each

point on the circle has an outgoing and an incoming

trajectory).

We choose to fly N = 16 aircrafts for results’

readability) equidistributed on a circle of 100Nm(=
185200m) radius To address this conflict resolution,

we use the following parameters :

• Number of generation : 100

• Size of the population : 500

• Mutation probability : pm = 0.3

• Crossover probability : pc = 0.6

• Maximal number of control points : Nc = 2

To compute the conflict resolution, we used a

2.53GHz Intel(R) Core(TM)2 Duo on a Windows

Vista Operating System and we coded in Java. The

obtained conflict-free situation is presented in meter-

scale (1Nm = 1852m) in Figure 7. This whole resolu-

tion computation required approximately 4 minutes.

Figure 7: The roundabout configuration after resolution

The fitness’ evolution with respect to generations

is shown in Figure 8. The fitness is meant to increase

to 0 as formula (4) shows. Moreover, when the fit-

ness is in [−1,0] the situation is conflict-free. Conse-

quently, the algorithm stops only when the best indi-

vidual fitness is in [−1,0].

Figure 8: The fitness evolution with respect the generation

Although one can easily solve intuitively this

academic problem due to its symmetry, our automatic



implementation does not exploit any symmetry here.

This result shows that our methodology is promising

as the obtained conflict resolution is consistent with

experts’ experience.

We also test our methodology on a more realistic

operational problem where N = 15 aircrafts are in-

volved in a fuzzy convergence. In this situation, for

each aircraft, we have its departure point, its head-

ing and its speed. To calculate the arrival points, we

make the 15 aircrafts fly for one hour at a constant

speed, on a straight line following the initial direction

(heading). We present the conflict-free situations our

algorithm obtains is displayed in Figure 9.

Figure 9: The operational problem after resolution

We can see on Figure 10 that on an operational

application, our method converges far more rapidly in

three generations (90 generations for the roundabout

test problem). This results shows that our method can

be very efficient from an operational point of view.

Indeed, in operational problems, there are never more

than four aircrafts involved in the same conflict. Con-

sequently, our algorithm will be able to deal very effi-

ciently with operational air traffic. For this situation,

we used a different number of generations because of

its extremely quick convergence (number of genera-

tion: 20). Moreover, we can see that few aircrafts

are deviated, which is consistent with a controller be-

haviour, who would prefer to deviate largely one air-

craft instead of deviating lightly several aircrafts to

solve conflicts.

Figure 10: The fitness evolution with respect the generation

6 CONCLUSION

We have shown in this paper that the combination

of B-splines and genetic algorithms can be a promis-

ing methodology for automatic conflict resolution in

air traffic control. However, we have in mind sev-

eral developments to improve our approach such as

using sharing in GA (deals with equirepartition of

the population on the different maximums) in our GA

or implementing a self-adaptative GA (every param-

eter such as bandwidth, control points’ number, etc

will be considered within the chromosome encoding,

as proper optimization variables). Furthermore, we

plan to exploit our B-spline model of trajectory to ad-

dress the conflict resolution problem with determinis-

tic derivative-free optimization methods (Conn et al.,

2009). Indeed, despite the local aspect of these meth-

ods, they can also be adapted to global optimization.
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