Inference of a random environment from random process realizations : formalism and application to trajectory prediction - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année :

Inference of a random environment from random process realizations : formalism and application to trajectory prediction

(1) , (2)
1
2
Cécile Ichard
  • Fonction : Auteur correspondant
  • PersonId : 946037

Connectez-vous pour contacter l'auteur

Résumé

We are interested in aircraft trajectories seen as stochastic processes. These processes evolve in an unknown atmospheric random environnment. As several aircraft parameters are unknown, such as true airspeed (TAS) and wind, we have to estimate them. To this end, we suggest to use ensemble weather forecasts, which give different scenarios for the atmosphere, with a system of trajectory predictions. In this way, we evaluate the likelihood of each element and we construct a random weather environment organized by the element weight. To get this result, we use sequential Monte Carlo methods (SMC) in the special context of random environment. We propose to use particle Markov chain Monte Carlo method (pMCMC) to estimate the aircraft parameters.
Fichier principal
Vignette du fichier
isiatm2013_submission_37.pdf (451.52 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00867898 , version 1 (30-09-2013)

Identifiants

  • HAL Id : hal-00867898 , version 1

Citer

Cécile Ichard, Christophe Baehr. Inference of a random environment from random process realizations : formalism and application to trajectory prediction. ISIATM 2013, 2nd International Conference on Interdisciplinary Science for Innovative Air Traffic Management, Jul 2013, Toulouse, France. ⟨hal-00867898⟩
471 Consultations
121 Téléchargements

Partager

Gmail Facebook Twitter LinkedIn More