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Abstract

In this paper we study the existence of the α−core for an n−person game with incomplete
information. We follow a Milgrom-Weber-Balder formulation of a game with incomplete
information. The players adopt behavioral strategies represented by Young measures. The
game unrolls in one step at the ex ante stage. In this context, the mixed-extensions of the
utility functions are not quasi-concave, and as a result the classical Scarf’s theorem cannot
be applied. An approximation argument is used to overcome this lack of concavity.
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1. Introduction

The purpose of this work is to study a “cooperative” version (α−core) of Milgrom-Webers’s
(Milgrom and Weber, 1985) model. We will work with a slightly different formulation
developed in (Balder, 1988) using behavioral strategies. Concerning the α-core, let us
say briefly that in the cooperative game theory players bargain to select a “collectively
efficient” outcome. The concept of the core appears then as a key concept. It is intuitively
defined as the set of payoff allocations (or decisions generating payoffs) relatively to which
no coalition can make all its members better off. Its natural formulation for normal form
games gives rise to the α−core introduced by Aumann (1961).

The existence of the α-core was mainly proved by Scarf (1971) for normal form games with
continuous quasi-concave payoffs and convex compact finite dimensional action spaces.
Obviously, Scarf’s result remains valid if players payoffs are only quasi-concave upper
semi-continuous and the strategies spaces are convex compact subsets of arbitrary Haus-
dorff topological vector spaces. In a more general setting, Kajii (1992) proved the non
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vacuity of the α-core when players welfare is measured by means of non-ordered prefer-
ences. This answers the question of whether Scarf’s result survives without transitivity
and completeness of players preferences. In Kajii’s framework, each player preference re-
lation is described by a set-valued map associating to a given aggregate strategy a set of
preferred strategies by the player. In this framework, Kajii proved an existence result for
generalized games with open graph preferences and compact and convex action spaces.
The compactness is assumed relatively to a topology derived from a norm which is a very
restraining condition in an infinite dimension setting. This limitation has been overcome
by Martins-da-Rocha and Yannelis (2011) using a Bewley-type limit argument (Bewley,
1978), a possible solution trick already discussed in Kajii (1992).

The concavity remained essential in these extensions. In the Milgrom-Webers’s (Milgrom
and Weber, 1985) model with behavioral strategies that we consider in this paper, the
expected payoffs may not be quasi-concave even with some restricted class of underlying
payoff functions. So a straightforward application of Scarf’s method (or its generalizations)
cannot be used. To be more explicit, as shown in Example 2 below, even if the utility
function for each player is concave, its mixed-extension may fail to be quasi-concave. Scarf’s
proof works by proving that a canonical associated characteristic function form game is
balanced by invoking the quasi-concavity of payoffs. Hence such argument does not apply
in our context. One novelty of this paper is the recovery of a similar balancedness using an
approximation argument: the density of the set of pure strategies in the set of behavioral
ones which allows us to exploit the concavity of (the initial) payoffs.

For some insight into behavioral strategies (and their variants) in connection with the model
that we deal with in this paper, let us begin by referring to the formulation of Milgrom and
Weber (1985) of an ad hoc mathematical model for normal form games with incomplete
information running in one step at the ex ante stage. This model relies on Harsanyi’s work
(Harsanyi, 1967–1968), assigning a set of types to players and a probability on this set
intended to reflect the incomplete information aspect of the game.
In a closely related study, Radner and Rosenthal (1982) developed a model for Nash equi-
librium with private information (each agent observes privately a realization of a random
variable). They investigated finite games with finite action spaces and under the atom-
less property of the probabilities governing the agents’ information which were in turn
assumed to be independent. They established existence results of Nash equilibrium in
pure strategy as a purification of equilibria in behavioral strategies. This technique is
widespread in the literature, the reason being that in many situations, particularly dealing
with Nash equilibrium (in incomplete information case), the existence results are obtained
easily with behavioral/mixed strategies unlike in the case with pure strategies. This is
also the method used by Schmeidler (1973) to prove the existence of pure strategy Nash
equilibrium for games with a continuum of players. In their paper, Milgrom and Weber
(1985) extended Radner and Rosenthal’s results by proving the existence of Nash equilib-
rium in distributional strategies (non “disintegrated” behavioral strategies), and provided
more general purification results. They established further approximate equilibria in pure
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strategies. Note, however, that the action space remains finite for the existence of the pure
strategy Nash equilibrium in Milgrom and Weber (1985).
Khan and Sun (1995) considered the model of Radner and Rosenthal. They generalized
the existence results to games with countable action spaces. Khan and Sun (1995) worked
out direct proofs of the existence of equilibria in pure strategies without passing through
purification of behavioral strategies. This was achieved by developing mathematical tools
on the distribution of correspondences, relying on a generalized version of the well known
marriage lemma. Khan and Sun generalized, at the same time, to a countable action
space, Schmeidlers’ existence result of a pure strategy Nash equilibrium for games with a
continuum of players. Khan et al. (1999) proved by a two-player example that for games
with private information, the results of Radner and Rosenthal (1982), Khan and Sun (1995)
and Milgrom and Weber (1985) cannot be extended to non countable action spaces.

Milgrom-Weber’s model seems to us more appropriate for mathematical treatment. It
was successfully reformulated by Balder (1988), using more elaborated and conventional
mathematical tools (Young measures). Doing this, the known purification results (from
behavioral strategies existence results) have been substantially improved in Balder (1988).
Balder and Rustichini (1994) extended these results to games with an infinite set of players.
Other interesting purification results can be found in Khan et al. (2006).

In this paper we adopt the formulation by Balder (1988) and we focus on ex ante core for
normal form games without incentive compatibility constraints. This amounts to saying
on one hand that the coalition formation is made at the ex ante stage. On the other hand,
we assume, in line with the literature point of view (see for instance (Forges et al., 2002)),
that either the enforcement date is situated before the interim stage (there is no loss in
randomness until the game takes place) or to require that all information become a public
knowledge before the enforcement date. The studied model allows externalities in both
types and actions. The interim core is interesting but far more complicated because of
incentive problems.

The outline of the paper is as follows. In the next section we give the details of our game
and introduce the corresponding equilibrium concept. We also recall some quick facts about
Young measures which play a crucial role in our modelling. In Section 3, we establish the
existence result. Then we end up in Section 4 with some remarks on our assumptions in
the existence theorem.

2. The model and mathematical preliminaries

The cooperative game we consider in this paper takes place in the following framework. We
have a finite set of players N = {1, ..., n}. Each player i observes an informational variable
(or type) ti whose values lie in some measurable space (Ti, Ti), where Ti is a σ-algebra. We
abbreviate T =

∏

i∈N Ti and endow T with the σ-algebra T =
⊗

Ti. Let η be a probability
on the product space (T, T ), which governs the random behavior of the information. The
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marginally realized information type, for each player i, is governed by ηi, the marginal on
(Ti, Ti) of η. For every i ∈ N , Ti is assumed to be ηi-complete. Associate to each player i
an action space Ai which is a convex compact subset of a Banach space. We assume that
the game takes place at the ex ante stage (see the introduction). That is each player i acts
according to ηi.
We associate for each player i a utility function Ui : T × A → R, where we abbreviate
A =

∏

j∈N Aj. The payoff of the player i under the types vector t and the actions vector
a is Ui(t, a).
In this framework, a pure strategy for a player i is a measurable function pi : Ti → Ai. So,
for every possible type ti ∈ Ti, the player i associates an action pi(ti). In this paper we
are concerned with behavioral strategies. A behavioral strategy for a player i is a function
from its type set to the set of probability measures P(Ai), i.e. δi : Ti → P(Ai), ti 7→ δiti
satisfying : for every borel set B ∈ B(Ai), the function ti 7→ δiti(B) is Ti-measurable. The
interpretation of a behavioral strategy is that, under each possible type ti, the player i
selects an action in Ai according to the probability measure δiti .
A behavioral strategy is nothing but a Young measure. It can be seen as a “measurable
mixed strategy”. Regarding the relatively weak regularity assumptions required for their
use, Young measures seem adequate and very convenient in our framework. This will
provides us with a wide powerful mathematical tools. Before pursuing, we briefly sketch
some of their properties in the following subsection. For more details on the subject the
reader is referred for e.g. to (Valadier, 1990; Castaing et al., 2004; Balder, 2000).

2.1. Some facts about Young measures

Let (Ω,F , µ) be a finite measure space and X a compact metric topological space. Assume
that F is µ-complete and endow X with its Borel σ-algebra B(X). Denote by R(Ω, X) the
set of transition probabilities (or Young measures) with respect to Ω and X. That is the
set of functions δ : Ω → P(X), ω 7→ δω such that for every B ∈ B(X), ω 7→ δω(B) is F -
measurable. This condition is equivalent to the measurability of the function δ : Ω → P(X)
where P(X) is endowed with the Borel σ−algebra generated by the weak (star) topology
σ(P(X), C(X)) (see Valadier (1990), Lemma A2 p. 178 and comment in p. 179, or
Castaing et al. (2004), p. 19). It may be worth noting that we are speaking precisely
about disintegrated Young measures. However, following a disintegration result (Valadier
(1990), theorem A4, p. 157), the set R(Ω, X) coincides (under our assumptions) with the
set of measures defined on F ⊗B(X) whose projections on Ω equals µ. This more larger
set, in a general situation, is referred to as the set of Young measures in (Castaing et al.,
2004; Valadier, 1990).
From generalized Fubini’s theorem (Valadier (1990), theorem A1, p. 177), every Young
measure δ ∈ R(Ω, X) induces a measure πδ on the product space (Ω × X,F ⊗ B(X))
defined by

∀A ∈ F , B ∈ B(X), πδ(A× B) =

∫

A

δω(B)dµ(ω). (1)

Furthermore, for all F⊗B(X)-measurable function Ψ : Ω×X → IR, which is πδ-integrable,
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we have
∫

Ω×X

Ψ(ω, x)dπδ =

∫

Ω

[
∫

X

Ψ(ω, x)dδω(x)

]

dµ(ω). (2)

The weak (star) topology (Balder (1988); Valadier (1990); Castaing et al. (2004)) on
R(Ω, X) is the coarsest topology making continuous the maps, δ 7→

∫

Ω×X
Ψ(ω, x)dπδ,

where Ψ is a Carathéodory integrand (that is F ⊗B(X)-measurable, continuous with re-
spect to its second variable x and there exists a real µ-integrable function φ such that
|Ψ(ω, x)| ≤ φ(ω), for all x ∈ X). Endowed with this topology,

(R1) the space R(Ω, X) is compact (see Castaing et al. (2004), theorem 4.3.5, p. 92, or
Valadier (1990), theorem A4, p.179).

For any measurable function f : Ω → X, the corresponding degenerate (or Dirac) Young
probability, denoted by ǫ(f), is defined for all ω ∈ Ω by δω(f(ω)) = 1. Denote D(Ω, X)
the set of all such Young measures.

(R2) Assume that µ is non-atomic, then following Theorem 2.2.3, p. 40 in (Castaing et
al., 2004), the space D(Ω, X) is dense in R(Ω, X).

In our game context, this means that pure strategies are dense in behavioral strategies.
For a degenerate Young measure δ = ǫ(f), (2) reduces to

∫

Ω×X

Ψ(ω, x)dπδ =

∫

Ω

Ψ(ω, f(ω))dµ(ω).

Let (Ωi,Fi, µi), (resp. Xi), i ∈ {1, 2} be measure (resp. topological) spaces meeting
previous requirements. Let µ be a measure defined on the product F1 ⊗ F2 such that its
corresponding marginal on (Ωi,Fi) is µi. Consider the Young measure spaces R(Ω1, X1)
and R(Ω2, X2). A product mapping (δ1, δ2) 7→ δ1 ⊗ δ2 can be defined by setting (δ1 ⊗
δ2)(ω1,ω2) = δ1ω1

⊗ δ2ω2
and we have

(R3) Assume that µ is absolutely continuous with respect to µ1 ⊗ µ2, then the product
mapping (δ1, δ2) 7→ δ1 ⊗ δ2 from R(Ω1, X1)×R(Ω2, X2) into R(Ω1 ×Ω2, X1 ×X2) is
continuous with respect to the weak topologies (see theorem 2.5 in Balder (1988)).

2.2. The α-core concept with behavioral strategies

Returning to the game, the set of strategies is
∏

j∈N R(Tj, Aj). When each player i plays his
behavioral strategy δi : Ti → P(Ai), the expected payoff of i is Ei :

∏

j∈N R(Tj, Aj) → IR
defined by :

Ei(δ1, δ2, ..., δn) =

∫

T

[
∫

A

Ui(t, a)dδ1t1 ⊗ δ2t2 ...⊗ δntn(a)

]

dη(t)

=

∫

T

[
∫

A1×...×An

Ui(t1, ..., tn, a1, ..., an)dδ1t1(a1)dδ2t2(a2)...dδntn(an)

]

dη(t)
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where we denoted t = (t1, ..., tn) and a = (a1, ..., an).
In the sequel, we make the abbreviations R =

∏

i∈N R(Ti, Ai) and for every coalition
S ⊂ N , RS =

∏

i∈S R(Ti, Ai). The coalition −S stands for N \S. For δS ∈ RS, δ−S ∈ R−S,
we write (δS, δ−S) for the element of R whose projections on RS and R−S are δS and δ−S

respectively. The spaces R(Ti, Ai), i ∈ N , are endowed with the weak topology described
above.
Abbreviate and define the previous game by its main components :

G = (N,Ui,R{i}).

Thereafter, we introduce the adapted α-core equilibrium concept :

Definition 1. A coalition S ⊂ N blocks a behavioral strategy γ = (γ1, ..., γn) ∈ R if and
only if there exists δS ∈ RS such that for all δ−S ∈ R−S,

Ei(δS, δ−S) > Ei(γ), ∀i ∈ S

The α−core of G is the set of behavioral strategies that are not blocked by any coalition.

In other words, a coalition blocks a given outcome of the game if it possesses a strategy
making all its members better off regardless of the opponent coalition choices for strategy.
The α-core describes situations in which no coalition has any incentive to form by playing
a different strategy. Indeed, it cannot improve upon, relatively to the equilibrium strategy,
the payoffs of all its members. In our model players’ welfare is measured in terms of the
expected utilities Ei computed from the common prior probability η and their respective
state contingent utilities. Since the game takes place at the ex ante stage, we omit to
consider communication games or any information sharing (see for instance (Myerson,
2007)). The following example illustrates the above ex ante blocking concept :

Example 1. Consider three players N = {1, 2, 3}. Set for every i ∈ N , Ti = Ai = [0, 1].
In the sequel λ refers to the Lebesgue measure on [0, 1] and λ|E to its restriction to the
measurable subset E ⊂ [0, 1]. Every Ti is endowed with its Borel σ−algebra on which we
define the probability ηi = λ. Put η = η1 ⊗ η2 ⊗ η3. The utility functions are defined for
every (t, a) ∈ T × A by :

U1(t, a) = −t2t3(t1 −
1
3
[a1 + a2 + a3]),

U2(t, a) = −t1t2t3(
1
2
− 1

3
[a1 + a2 + a3]),

U3(t, a) = −1
3
t3(a

2
1 + a1 + a2 + a23).

Remark that the functions Ui are continuous, so the corresponding previous expectations
Ei are well defined.
• Consider the behavioral strategy δ1 = (ǫ(0), ǫ(0), ǫ(0)). That is, for every i ∈ N , δ1i is
the degenerate Young measure associated to the function fi ≡ 0. Then,

E1(δ
1) = −

1

8
, E2(δ

1) = −
1

16
and E3(δ

1) = 0.
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• The coalition {1, 2} blocks δ1 by playing its behavioral strategy (δ21, δ
2
2) defined by :

δ21 = ǫ(g1) and δ22 = ǫ(1
2
), where ǫ(g1) is the Young measure associated to the function

g1 : t1 7→ t1 and ǫ(1
2
) is the Young measure associated to the constant function g2 ≡ 1

2
.

Indeed, for all δ3 ∈ R(T3, A3),

E1(δ
2
1, δ

2
2, δ3) = −

1

24
+

1

3

∫

T

[
∫

A3

t2t3a3dδ3t3 (a3)

]

dη.

It is clear that the minimum of E1 over δ3 ∈ R(T3, A3) is reached at δ3 = ǫ(0) and
E1(δ

2
1, δ

2
2, ǫ(0)) =

−1
24

> E1(δ
1). Similarly, for all δ3 ∈ R(T3, A3), E2(δ

2
1, δ

2
2, δ3) ≥ E2(δ

2
1, δ

2
2, ǫ(0)) =

−1

72
> E2(δ

1). For now, δ1 is blocked by {1, 2} by playing (δ21, δ
2
2) = (ǫ(g1), ǫ(

1
2
)). To carry

on this illustration, assume that the coalition {1, 2} plays (ǫ(g1), ǫ(
1
2
)) and the player 3

plays his corresponding best strategy, which is obviously δ23 = ǫ(0). His expected gain is

E3(ǫ(g1), ǫ(
1

2
), ǫ(0)) = −

1

3

∫

T

t3(t
2
1 + t1 +

1

2
)dη = −

2

9

• Set δ2 = (ǫ(g1), ǫ(
1
2
), ǫ(0)). By a straightforward computation we can check that the

grand coalition N blocks δ2 by playing the behavioral strategy δ3, defined by :

δ31 : t1 7→
1

t1
λ|[0,t1], δ32 =

1

2
ǫ(
1

2
) +

1

2
ǫ(0) and δ33 = ǫ(

3

4
).

The corresponding expected payoffs are :

E1(δ
3
1, δ

3
2, δ

3
3) = −

1

48
, E2(δ

3
1, δ

3
2, δ

3
3) = −

1

144
, and E3(δ

3
1, δ

3
2, δ

3
3) = −

169

864
.

Note that, for every measurable E ⊂ A1, the function t1 7→ δ31t1 (E) = 1
t1
λ([0, t1] ∩ E) is

measurable as it is obviously continuous on ]0, 1]. This ensures that δ3 is a Young measure.

3. Main result

Before stating the main result of this paper, let us expose our key assumptions. First we
recall that

(A1) for every i ∈ N , the action space Ai is a convex compact subset of a Banach space

and assume that

(A2) for every i ∈ N , ηi is non-atomic and η is absolutely continuous with respect to
n

⊗
i=1

ηi.

We also introduce the following assumptions on the payoff functions.
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(A3) For every i ∈ N , Ui is measurable on the product T × A, Ui(t, ·) is continuous for
every t ∈ T , and there exists an η-integrable real function φ : T → IR such that
|Ui(t, a)| ≤ φ(t) for every a ∈ A and a.e t ∈ T . That is to say, Ui is a Carathéodory
integrand.

(A4) For every i ∈ N , Ui(t, ·) is concave for a.e. t ∈ T .

Theorem 1. Under assumptions (A1)–(A4), the α−core of G is nonempty.

The proof requires two preparatory lemmas.

Lemma 1. Ei is continuous for every i ∈ N .

Proof. By (R3) the map (γ1, γ2, ..., γn) 7→ ⊗
j∈N

γj is continuous. Since for every i ∈ N , Ui

is a Carathéodory integrand, the definition of the weak topology on R(T,A) provides per
se the continuity of the real map δ 7→

∫

T×A
Ui(t, a)dπδ defined on R(T,A). Hence, the

averages Ei, i ∈ N, are continuous, as a composition of two continuous maps.

Lemma 2. Let S ⊂ N and ε > 0. Then, for every behavioral strategy profile δS =
(δi1 , ..., δi|S|

) ∈ RS there exist pure strategies fi : Ti → Ai, i ∈ S, such that

Ei(ǫ(fi1), ǫ(fi2), ..., ǫ(fi|S|
), γ−S) ≥ Ei(δS, γ−S)− ε, ∀i ∈ S, ∀γ−S ∈ R−S.

Proof. From Lemma 1 and (R1), that is by continuity of the functions Ei, i ∈ N, and the
compactness of R−S, the function

H : (δ′S, δS) 7→ min
i∈S

min
γ−S∈R−S

[Ei(δ
′
S, γ−S)− Ei(δS, γ−S)]

is continuous on the product RS×RS. Since H(δS, δS) = 0, there is a neighborhood O(δS)
of δS such that,

H(δ′S, δS) > −ε, ∀δ′S ∈ O(δS).

By (R2),
∏

i∈S D(Ti, Ai) is dense in RS, so we can find measurable functions fi : Ti → Ai,
i ∈ S, such that ǫ(fS) := (ǫ(fi1), ..., ǫ(fi|S|

)) belongs to O(δS), that is

H(ǫ(fS), δS) > −ε,

or equivalently

Ei(ǫ(fi1), ǫ(fi2), ..., ǫ(fi|S|
), γ−S) > Ei(δS, γ−S)− ε, ∀i ∈ S, ∀γ−S ∈ R−S.
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Proof of Theorem 1. Scarf (1967) demonstrated a general core existence result for char-
acteristic function form games. In order to use this result we must pass from the defini-
tion of the game in term of strategies and utility functions to the characteristic function
form. Associate to the game G a characteristic function form game GC = (N, V ), where
V : 2N → 2IR

N

is defined as follows :

VS =

{

y ∈ IRN :
∃δS ∈ RS, ∀δ−S ∈ R−S,
Ei(δS, δ−S) ≥ yi, ∀i ∈ S.

}

.

A vector y = (y1, ..., yn) is in VS, if there is a behavioral strategy of members of S, which
provides player i (for i ∈ S) with a utility of at least yi for all strategy choices of the players
not in S. A vector y is in the core of this game if y ∈ VN and y is not in the interior of VS

for any coalition S. It is obvious that to such element corresponds a behavioral strategy
in the core of G. So, the goal now is to prove that GC has a nonempty core. Following
Scarf (1967), this will be true if we prove

(I) each VS is closed and nonempty,

(II) each VS is comprehensive (i.e., y ∈ VS and x ≤ y (in componentwise sense) implies
x ∈ VS),

(III) VN is bounded from above,

(IV) GC is balanced, that is to say, for every balanced collection of coalitions C with
balancing weights αS, S ∈ C , the following property holds :

⋂

S∈C

VS ⊂ VN ,

where a collection of coalitions C is said to be balanced iff there is non negative
weights αS, S ∈ C , such that

∑

S∈C ,S∋j

αS = 1, ∀j ∈ N.

The second item is trivial. The first item and the third item follow obviously from the
continuity of the functions Ei, i ∈ N, and the compactness of the sets R,RS and R−S for
every S ⊂ N . Just remark, for the first item, that for every S ⊂ N , VS is an upper section
of a continuous function, precisely :

VS =

{

y ∈ IRn, max
δS∈RS

min
δ−S∈R−S

min
i∈S

{Ei(δS, δ−S)− yi} ≥ 0

}

It remains to prove that GC is balanced. Consider a balanced collection of coalitions C

with the associated balancing weights αS, S ∈ C , and let y ∈
⋂

S∈C

VS. We must therefore

demonstrate that y ∈ VN . Since VN is closed, it suffices to show that (yi − ε)i∈N ∈ VN for
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every ε > 0. Indeed this will permit, thanks to Lemma 2, the use of pure strategies. From
the definition of V , for every S ∈ C there exists δS ∈ RS such that for every γ−S ∈ R−S,
Ej(δS, γ−S) ≥ yj, for all j ∈ S. Let us given ε > 0. According to Lemma 2, for every
S ∈ C , there is measurable functions fS

i : Ti → Ai, i ∈ S, such that,

Ej((ǫ(f
S
i ))i∈S, γ−S) ≥ Ej(δS, γ−S)− ε ≥ yj − ε, ∀γ−S ∈ R−S, ∀j ∈ S. (3)

In the sequel we apply a Scarf’s trick (Scarf, 1971) in order to construct an element in R
ensuring a utility of at least yj − ε for each player j ∈ N .
Define the function

f = (f1, ...., fn) = (
∑

S∈C ,S∋1

αSf
S
1 , ...,

∑

S∈C ,S∋n

αSf
S
n ).

Fix an arbitrary index j ∈ N and verify that f can be expressed as :

∑

S∈C ,S∋j

αS(h
S
1 , ..., h

S
n)

where hS
i : Ti → Ai is defined by

hS
i (ti) =



























fS
i (ti), if i ∈ S,

∑

E∋i,E 6∋j

αEf
E
i (ti)

∑

E∋i,E 6∋j

αE

, if i /∈ S.

where the last summations (and all the following) are made, if not mentioned, over the
coalitions E (or S) belonging to C .
Indeed, for every i,

∑

S∈C ,S∋j

αSh
S
i =

∑

S∋j,S∋i

αSf
S
i +

∑

S∋j,S 6∋i

αS

∑

E∋i,E 6∋j

αEf
E
i

∑

E∋i,E 6∋j

αE

.

To conclude that the previous quantity gives fi, it suffices to remark that

∑

S∋j,S 6∋i

αS =
∑

E∋i,E 6∋j

αE,

which is a consequence of the balancedness of the collection of coalitions :

1 =
∑

S∋j

αS =
∑

S∋j,S 6∋i

αS +
∑

S∋i,S∋j

αS =
∑

E∋i,E 6∋j

αE +
∑

S∋i,S∋j

αS =
∑

E∋i

αE = 1.

10



Now with the help of the concavity of Uj we obtain

Ej(ǫ(f1), ..., ǫ(fn)) =

∫

T

Uj(t1, ..., tn, f1(t1), ..., fn(tn))dη(t)

=

∫

T

Uj

(

t1, ..., tn,
∑

S∋j

αS(h
S
1 (t1), ..., h

S
n(tn))

)

dη(t)

≥
∑

S∋j

αS

∫

T

Uj(t1, ..., tn, h
S
1 (t1), ..., h

S
n(tn))dη(t)

But, for every S ∋ j, that is every term in the right hand side of the last previous inequality,
we can write,
∫

T

Uj(t1, ..., tn, h
S
1 (t1), ..., h

S
n(tn))dη(t) =

∫

T

Uj(t1, ..., tn, (f
S
i (ti))i∈S, (h

S
i (ti))i∈−S)dη(t)

= Ej((ǫ(f
S
i ))i∈S, (ǫ(h

S
i ))i∈−S)

≥ yj − ε

where the last inequality comes from (3).
Hence,

Ej(ǫ(f1), ..., ǫ(fn)) ≥ yj − ε

Since j ∈ N is fixed arbitrarily, consider that the last inequality is true for all j ∈ N . So,
we constructed an element δ = (δ1, ..., δn) = (ǫ(f1), ..., ǫ(fn)) ∈ R satisfying :

Ej(δ) ≥ yj − ε, ∀j ∈ N.

4. Concluding remark

One can inquire whether the functions Ei defined above are quasi-concave on the space R
under moderate conditions on the functions Ui (or under what conditions on Ui they are).
Because, in such case, one can apply directly Scarf’s (Scarf, 1971) (or a slightly modified
version working in infinite dimension) existence results to prove the non-emptiness of the
α-core of our game. This will make our results above superfluous. However, such an
assertion is generally false. Indeed, the example below shows that under the concavity of
Ui on A =

∏

Ai, the functions Ei fail to be quasi-concave.

Example 2. Consider a game with n players, n ≥ 2. For all i ∈ {1, 2, 3, ..., n}, put
Ai = [0, 1] and let (Ti,Σi) be a measurable space. Take η an arbitrary probability on
∏n

i=1 Ti = T , provided the previous requirements are satisfied, and denote ηi its marginal
on Ti.
Let φ : IRn −→ IR be a linear map different from the 0 functional such that (1, ..., 1) ∈ kerφ.

Take for instance φ(a1, a2, ..., an) =
n
∑

i=1

ai − na1.

11



We emphasize that the purpose of this example is to show that even for concave utilities
Ui, the expectations Ei may fail to be quasi-concave. This, in fact, will prove the non
applicability of Scarf’s non-emptiness result and will show accordingly the value added by
our work. Henceforth, it suffices to construct a concave possible utility, denote it simply
U , with a non quasi-concave corresponding expectation E.

Put U :
n
∏

i=1

Ai −→ IR, U(a1, ..., an) = − |φ(a1, ..., an)|. Then, U is obviously concave.

Let for all i ∈ {1, 2, 3, ..., n},

• f 1
i : Ti −→ Ai the null function f 1

i ≡ 0 and δ1i = ǫ(f 1
i ) the associated Young measure.

Put δ1 = (δ11, δ
1
2, δ

1
3, ..., δ

1
n).

• f 2
i : Ti −→ Ai the constant function f 2

i ≡ 1 and δ2i = ǫ(f 2
i ) the associated Young

measure. Put δ2 = (δ21, δ
2
2, δ

2
3, ..., δ

2
n).

Then,

E(δ1) =

∫

T

U(f 1
1 (t1), f

1
2 (t2), f

1
3 (t3), ..., f

1
n(tn))dη = U(0, ..., 0) = 0

and

E(δ2) =

∫

T

U(f 2
1 (t1), f

2
2 (t2), f

2
3 (t3), ..., f

2
n(tn))dη = U(1, ..., 1) = 0.

But,

E( δ
1+δ2

2
) =

∫

T

[

∫

A
U(a)d

n

⊗
i=1

δ1
iti

+δ2
iti

2

]

dη

= 1
2n

∫

T

[

∫

A
U(a)d

n

⊗
i=1

(δ1iti + δ2iti )

]

dη

= 1
2n

∫

T

[

∫

n−1∏

i=1

Ai

(

∫

An
U(a)d(δ1ntn

+ δ2ntn
)
)

d
n−1
⊗
i=1

(δ1iti + δ2iti )

]

dη

= 1
2n

∫

T

[

∫

n−1∏

i=1

Ai

(U(a1, ..., an−1, 0) + U(a1, ..., an−1, 1)) d
n−1
⊗
i=1

(δ1iti + δ2iti )

]

dη

= 1
2n

∫

T

[

∫

n−2∏

i=1

Ai

(

∫

An−1
[U(a1, ..., an−1, 0) + U(a1, ..., an−1, 1)]

d(δ1(n−1)tn−1

+ δ2(n−1)tn−1

)
)

d
n−2
⊗
i=1

(δ1iti + δ2iti )

]

dη

E( δ
1+δ2

2
) = 1

2n

∫

T

[

∫

n−2∏

i=1

Ai

(U(a1, ..., an−2, 0, 0) + U(a1, ..., an−2, 1, 0)

+U(a1, ..., an−2, 0, 1) + U(a1, ..., an−2, 1, 1)) d
n−2
⊗
i=1

(δ1iti + δ2iti )

]

dη

...

= 1
2n

∫

T

[

∑

S⊂{1,2,3,...,n},S 6=∅

U(
∑

j∈S

ej)

]

dη
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where ej = (0, ..., 0, 1
jth component

, 0, ..., 0), for every j ∈ {1, ..., n}.

Since φ 6≡ 0, for at least one index j ∈ {1, 2, 3, ..., n}, φ(ej) 6= 0. Consequently U(ej) < 0,
hence,

∫

T





∑

S⊂{1,2,3,...,n},S 6=∅

U(
∑

j∈S

ej)



 dη < 0.

That is,

E

(

δ1 + δ2

2

)

< min
{

E(δ1), E(δ2)
}

.

Which means that E is not quasi-concave.
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