Arrêt de service programmé du vendredi 10 juin 16h jusqu’au lundi 13 juin 9h. Pour en savoir plus
Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Aircraft trajectory forecasting using local functional regression in Sobolev space

Abstract : This paper considers the problem of short to mid-term aircraft trajectory prediction, that is, the estimation of where an aircraft will be located over a 10-30 min time horizon. Such a problem is central in decision support tools, especially in conflict detection and resolution algorithms. It also appears when an air traffic controller observes traffic on the radar screen and tries to identify convergent aircraft, which may be in conflict in the near future. An innovative approach for aircraft trajectory prediction is presented in this paper. This approach is based on local linear functional regression that considers data preprocessing, localizing and solving linear regression using wavelet decomposition. This algorithm takes into account only past radar tracks, and does not use any physical or aeronautical parameters. This approach has been successfully applied to aircraft trajectories between several airports on the data set that is one year air traffic over France. The method is intrinsic and independent from airspace structure.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-00924360
Contributeur : Céline Smith Connectez-vous pour contacter le contributeur
Soumis le : mercredi 5 février 2014 - 08:46:38
Dernière modification le : lundi 4 avril 2022 - 15:24:11
Archivage à long terme le : : lundi 5 mai 2014 - 22:07:03

Fichier

Tastambekov_TRC2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Kairat Tastambekov, Stéphane Puechmorel, Daniel Delahaye, Christophe Rabut. Aircraft trajectory forecasting using local functional regression in Sobolev space. Transportation research. Part C, Emerging technologies, Elsevier, 2014, 39, pp 1-22. ⟨10.1016/j.trc.2013.11.013⟩. ⟨hal-00924360⟩

Partager

Métriques

Consultations de la notice

812

Téléchargements de fichiers

758