Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Naive possibilistic classifiers for imprecise or uncertain numerical data

Abstract : In real-world problems, input data may be pervaded with uncertainty. In this paper, we investigate the behavior of naive possibilistic classifiers, as a counterpart to naive Bayesian ones, for dealing with classification tasks in the presence of uncertainty. For this purpose, we extend possibilistic classifiers, which have been recently adapted to numerical data, in order to cope with uncertainty in data representation. Here the possibility distributions that are used are supposed to encode the family of Gaussian probabilistic distributions that are compatible with the considered dataset. We consider two types of uncertainty: (i) the uncertainty associated with the class in the training set, which is modeled by a possibility distribution over class labels, and (ii) the imprecision pervading attribute values in the testing set represented under the form of intervals for continuous data. Moreover, the approach takes into account the uncertainty about the estimation of the Gaussian distribution parameters due to the limited amount of data available. We first adapt the possibilistic classification model, previously proposed for the certain case, in order to accommodate the uncertainty about class labels. Then, we propose an algorithm based on the extension principle to deal with imprecise attribute values. The experiments reported show the interest of possibilistic classifiers for handling uncertainty in data. In particular, the probability-to-possibility transform-based classifier shows a robust behavior when dealing with imperfect data.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [58 références]  Voir  Masquer  Télécharger
Contributeur : Céline Smith Connectez-vous pour contacter le contributeur
Soumis le : vendredi 10 janvier 2014 - 08:47:32
Dernière modification le : lundi 4 juillet 2022 - 08:45:40
Archivage à long terme le : : jeudi 10 avril 2014 - 22:06:34


Fichiers produits par l'(les) auteur(s)



Myriam Bounhas, Mohammad Ghasemi Hamed, Henri Prade, Mathieu Serrurier, Khaled Mellouli. Naive possibilistic classifiers for imprecise or uncertain numerical data. Fuzzy Sets and Systems, Elsevier, 2013, pp xxxx. ⟨10.1016/j.fss.2013.07.012⟩. ⟨hal-00926435⟩



Consultations de la notice


Téléchargements de fichiers