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The purpose of this communication is to deal with the case in which an aerodynamic 

actuator failure occurs to an aircraft while it has to perform guidance maneuvers. The 

problem considered deals with the reallocation of redundant actuators to perform the 

required maneuvers and maintain the structural integrity of the aircraft. A Nonlinear 

Inverse Control technique is used to generate online nominal moment along the three axis of 

the aircraft. Then, taking into account all material and structural constraints as well as the 

redundant effects from other actuators, a Mathematical Programming problem to be solved 

online is considered. The proposed solution method is based on dynamic neural networks 

which appears to provide acceptable response times. Simulation results are displayed and 

new development perspectives are discussed. 

Nomenclature 

α = angle of attack, rad β = sideslip angle, rad δp, δq, δr = roll, pitch, yaw actuator deflections, rad 

p, q, r = roll, pitch, yaw rates, rad/s 

V = airspeed, m/s 

 

I. Introduction 

 n this paper we consider a transportation aircraft in the situation in which a main aerodynamic actuator failure 

occurs while it has to perform guidance maneuvers. Here using dynamic inversion of flight dynamics, the 

necessary moments to perform a given guidance maneuver are computed, and then an optimization problem is 

considered to generate on-line reference values for the fault free actuators. This represents the main difference with 

other previous approaches to actuator fault management1-4. In the case considered, a linear quadratic programming 

formulation of the optimization problem can be adopted and a neural network approach to get on-line solution is 

discussed.  

II. Modeling the Effectiveness of Aerodynamic Actuators 

The effectiveness of the control surfaces is made apparent by their contribution to the dimensionless coefficients 

present in the expressions of aerodynamic forces and moments5. Then the angular deflections of these control 

surfaces produce a collective effect over the aircraft which should satisfy structural constraints. The global 

dimensionless coefficients used to express aerodynamic forces can be given by: 

 Cx = Cx0 + k Cz
2 (1.1) 

 Cy = Cyβ β + Cyp plA/V + Cyr rlA/V+ Cyδp’δp + Cyδr’δr (1.2) 

 Cz = Cz0 + Czα α + Czδths δths + Czδq’δq (1.3) 

where standard scalar notation for main aerodynamic actuators is replaced by a vector one where each elementary 
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aerodynamic surface is distinguished and assigned to its main effect (roll, pitch or yaw effect) and different 

coefficient Cij are also dimensionless. The non dimensional coefficients of the different aerodynamic moments can 

in general be expressed such as: 

 Cm = Cm0 + Cmα α + Cmq qlA/V + Cmδths δths + Cmδq’δq (2.1) 

 Cl = Cl0 + Clβ β + Clp plA/V + Clr rlA/V+ Clδp’δp + Clδr’δr (2.2) 

 Cn = Cn0 + Cnβ β + Cnp plA/V + Cnr rlA/V + Cnδp’δp + Cnδr’δr (2.3) 

The expression of the different aerodynamic moments generated by the control surfaces can be approximated by 

an affine form with respect to the corresponding deflections of the different aerodynamic actuators, so that we get 

expressions such as:  

 kikikik MM δμ+= 0  (3) 

where Mik is the ith considered moment (roll, pitch, yaw, bending, flexion), δk is the deflection of the kth aerodynamic 

actuator (k∈K={aileron, flap, right spoilers, left spoilers, elevator, rudder}) and μik is the current effectiveness of 

actuator k to produce moment i. The current values Mik
0(t) and μik(t) depend on the airspeed V of the aircraft, its 

flight level z and on the values of the main motion variables α, β, p, q and r. Global aerodynamic moments generated 

by aircraft aerodynamic actuators can be rewritten in an affine form as: 

 )()()()( 0 ttXtLtL
LIi

i
L
i∑

∈
+= δ  (4.1) 

 ( ) )()()( 0 ttXtMtM
MIi

i
M
i∑

∈
+= δ  (4.2) 

 ( ) )()()( 0 ttXtNtN
NIi

i
N
i∑

∈
+= δ  (4.3) 

with 
L M NI I I I= ∪ ∪ , where 

LI  is the set of actuators able 

to generate roll moment, 
NI  is the set of actuators able to 

generate yaw moment, while 
MI  is the set of actuators 

generating pitch moment. Fig. 1 displays, in the case of a 

A340 aircraft, the available wing actuators. The current values 

of )(0 tL , )(tX L
i , )(0 tM , )(tX M

i , )(0 tN  and )(tX N
i  

depend on the airspeed V of the aircraft, its flight level z and 

on the values of the main motion variables α, β, p, q and r. 

 

III. Actuators constraints and limitations 

The operation of the different actuators must satisfy to global and local physical constraints which must be taken 

into account by any flight control system. 

A. Actuators position and speed limitations 
With respect to control surfaces, the following typical constraints should be met: 

 Iiiii ∈≤≤ maxmin δδδ  (5.1) 

 Iiiii ∈≤≤ maxmin δδδ  (5.2) 

where min
iδ , max

iδ , min
iδ  and max

iδ  are extreme position and speed values. These conditions can be considered at 

sampled instants, it becomes: 

 
Figure 1. Example of Wing Actuators (A340) 
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 { } )()(,max minmin tttt iiii δδδδ ≤Δ+Δ−  (6.1) 

                                                     and 

 { }tttt iiii Δ+Δ−≤ maxmax )(,min)( δδδδ  (6.2) 

B. Global constraints 

Global constraints are in general related with structural considerations. It can be shown that total wing bending 

and torsion moments during maneuver can be written in an affine form as6: 

 ( ) ( ) ( ) ( )
wing

b b bi i

i I

M t A t Y t tδ
∈

= + ∑  (7.1) 

                                                     and 

 ( ) ( ) ( ) ( )
wing

f f fi i

i I

M t A t Y t tδ
∈

= + ∑  (7.2) 

with II wing ⊂  is the set of wing actuators contributing to the bending and torsion moments, where Ab, Ybi, Af and Yfi 

depend also on the airspeed V of the aircraft, its flight level z and on the values of motion variables α, β, p, q and r. 

Then the global wing bending and flexion constraints can be written as:  

 
max( ) ( ) ( )

wing

b bi i bend

i I

A t Y t t Mδ
∈

+ ≤∑  (8.1) 

                                                     and 

 
max( ) ( ) ( )

wing

f fi i tor

i I

A t Y t t Mδ
∈

+ ≤∑  (8.2) 

where 
max

bendM  and 
max

torM are maximum acceptable bending and torsion moments at the wing root. Here it is 

supposed that the satisfaction of these global constraints implies the satisfaction of local bending and torsion 

moments constraints. 

IV. Actuators Allocation for Maneuvering Aircraft  

Here we study the case of a pure stabilized roll maneuver where the following conditions should be met by the 

body angular rates of the aircraft: 

 cp ppp =+τ  (9.1) 

 0=q  (9.2) 

 φτ sin)/( Vgrrr =+  (9.3) 

where roll and yaw motions follow first order dynamics while pitch dynamics remains frozen. Here pc is the desired 

roll rate and τp and τr are time constants. The dynamic constraint relative to the yaw rate is characteristic of an 

equilibrated turn, its completion should allow to avoid noticeable lateral load factors during this roll maneuver. 

Applying the non linear inverse control approach7, we get the necessary on-line values for each aerodynamic 

moment:  

 2 2( ) ( ) ( ) ( ) ( ( ) ( ) )M t A C r t p t E p t r t= − + −  (10.1) 

                                                     and 

 

1
( ( ))

( )

1( )
(( / ( )) sin ( ) ( ))

c

p

r

p p t
A EL t

E CN t
g V t t r t

τ
φτ

⎡ ⎤−⎢ ⎥−⎡ ⎤ ⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦ −⎢ ⎥⎣ ⎦
 (10.2) 

Here we consider the situation where the failure affects some of the commonly used actuators but some actuator 
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redundancy remains to try to perform maneuvers.  

Depending on the remaining degree of redundancy between elementary actuators, it is possible that a solution 

matches exactly the following constraints: 

 0( ) ( ) ( ) ( )
L

L

i i

i I

X t t L t L tδ
∈

= −∑  (11.1) 

 0( ) ( ) ( ) ( )
M

M

i i

i I

X t t M t M tδ
∈

= −∑  (11.2) 

 0( ) ( ) ( ) ( )
N

N

i i

i I

X t t N t N tδ
∈

= −∑  (11.3) 

In this case the maneuver will be performed still in a standard way. Otherwise, an approximate maneuver should be 

defined. Here we propose to solve on-line the following linear quadratic problem given by: 

 

0 2 0 2

0 2

min ( ( ) ( ) ( ) ( )) ( ( ) ( ) ( ) ( ))

( ( ) ( ) ( ) ( ))

L M

N

L M

L i i M i i

i I i I

N

N i i

i I

w X t t L t L t w X t t M t M t

w X t t N t N t

δ δ δ
δ

∈ ∈

∈

− + + − +
+ − +

∑ ∑
∑  (12) 

with the following constraints: 

 
max( ) ( ) ( )

wing

b bi i bend

i I

A t Y t t Mδ
∈

+ ≤∑  (13.1) 

 
max( ) ( ) ( )

wing

f fi i tor

i I

A t Y t t Mδ
∈

+ ≤∑  (13.2) 

 
min max   i i i F

i Iδ δ δ≤ ≤ ∈  (14.1) 

 
min max   i i i FLi Iδ δ δ≤ ≤ ∈  (14.2) 

 { }min minmax , ( ) ( )  i i i i F
t t t t i Iδ δ δ δ− Δ + Δ ≤ ∈  (14.3) 

 { }max max( ) min , ( )   i i i i F
t t t t i Iδ δ δ δ≤ − Δ + Δ ∈  (14.4) 

 { }min minmax , ( ) ( )  i i i i FSt t t t i Iδ δ δ δ−Δ + Δ ≤ ∈  (14.5) 

 { }max max( ) min , ( )   i i i i FSt t t t i Iδ δ δ δ≤ −Δ + Δ ∈  (14.6) 

with 

 0
~ =

jiδ  if FFj Ii ∈ , { }thsrqpj ,,,∈  (15.1) 

                                                     and 

 
jj ii δδ =~
 if FPj Ii ∈ , { }thsrqpj ,,,∈  (15.2) 

where 
F

I  is the set of fully operational actuators, FLI , FSI  are respectively the set of actuators whose angular 

positions, angular speed are subject to addition limitations, FPI  is the set of actuators which are stuck at a known 

angular position, FFI  is the set of actuators which are not subject to a torque from their servo-control and with a 

zero deflection. wL, wM and wN are positive weighting parameters which, in the case of a roll maneuver, are such as: 

 L Mw w  and L Nw w  (16) 
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The above mathematical programming problem can be solved using standard programming techniques and 

making use as a start of the previous value of the deflections of the actuators. Then in a few iterations the solution of 

this small size linear quadratic problem should be obtained. Another approach much more direct and systematic 

considers the use of neural network to solve on-line the above class of problems. 

V. Neural Networks for Online Solution 

The basic idea for solving an optimization problem using a tailored neural network is to make sure that the 

neural network will converge asymptotically and that the equilibrium point of the neural network will correspond to 

the optimal solution of the optimization problem. In 1986, Tank and Hopfield introduced a linear programming 

neural network solver realized with an analog circuit which appeared to be well suited for applications that require 

on-line resolution8. After that, many neural network models for solving linear and quadratic programming problems 

have been proposed in the literature. For a review see [9,10].  

According to the relationship between the states of the neural network and the values of primal and dual decision 

variables, it is possible to divide the existing recurrent neural network for solving linear and quadratic programming 

problems into three classes: primal neural network, primal-dual neural network, and dual neural network. In the 

present case, the programming problem is subject to equality and inequality constraints as well as bounding limits. 

Adopting a primal-dual neural network it is necessary to add many slack variables and the size of network becomes 

larger. This primal-dual neural network should be globally convergent. Its convergence speed can be adjusted by 

choosing an adequate value for its learning parameter11. 

Here a general linear-quadratic programming problem is considered as follows: 

 ( ) 1
min     

2

T Tf Q cδ δ δ δ= +  (17) 

 s.t.     ( ) 0h J dδ δ= − =  (18.1) 

          ( ) 0g A bδ δ= − ≤  (18.2) 

 ξ δ ξ− +≤ ≤  (18.3) 

where δ is the actuator deflections vector and where matrix Q is assumed symmetric positive semi-definite such that 

quadratic programming and linear programming can both to be handled by Eq. (17) and Eq. (18). 

Once the set of constraints Eq. (18.1), Eq. (18.2), Eq. (18.3) is feasible, at least one optimal solution δ* will meet 

the Karush-Kuhn-Tucker optimality conditions (KKT)12. Then Eq. (17) and Eq. (18) can be turned equivalent to the 

following set of linear variational inequalities:  

 ( ) ( )T

y y Hy p∗ ∗− + ≥ 0   ∀y∈Ω (19) 

with the primal-dual variables 
T

T T Ty u vδ⎡ ⎤= ⎣ ⎦ . Then the problem is to find a solution vector y*. Its feasible 

region Ω  and its lower/ upper limits are given by: 

 { }: y yς ς− +Ω = ≤ ≤ ,  0
Tς ξ ω− − +⎡ ⎤= −⎣ ⎦   

Tς ξ ω ω+ + + +⎡ ⎤= ⎣ ⎦  (20) 

Here ω+
 has an appropriate dimension and each of its entries is sufficiently large to replace +∞  numerically. The 

coefficients are defined as: 

 
T

T T Tc d bρ ⎡ ⎤= −⎣ ⎦                0 0

0 0

T TQ J A

H J

A

⎡ ⎤−⎢ ⎥= ⎢ ⎥⎢ ⎥−⎣ ⎦
 (21) 

Then the neural network model which solves Eq. (17) and Eq. (18) is given by: 
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 ( ) ( )( ){ }T
dy

E H P y Hy y
dt

λ ρΩ= + − + −  (22) 

where λ  is a positive learning parameter which can be used to adjust the convergence speed of the network, E is 

an identity matrix, [ ]PΩ ⋅  is a piecewise-linear function defined as  

 [ ]
,    if 

,   if 

,   otherwise

i i i

i i i i

i

x

P y x

y

ς ς
ς ς
− −
+ +Ω

⎧ ≤⎪= ≥⎨⎪⎩
 (23) 

VI. Numerical Example 

This example is taken from [13], which is concerned with the control of the unstable lateral/directional dynamics 

of the X-33 vehicle at critical conditions during the entry flight. By assuming that a linear relationship exists 

between the pseudo-control vector y and the actual actuators deflections, [13] formulates the problem as: 

 y = Bδ (24) 

where y = [p q r]T, δ = [δrevi, δlevi, δrbf, δlbf, δrvr, δlvr, δrevo, δlevo]
T with δrevi, δlevi = right and left inboard elevons; δrbf, δlbf 

= right and left body flaps; δrvr, δlvr = right and left rudders; and δrevo, δlevo = right and left outboard elevons and B is a 

3×8 real valued matrix. 

Now to satisfy Eq. (24) as well as control surfaces limits such as maxmin

iii δδδ ≤≤  i∈{revi, levi, rbf, lbf, rvr, lvr, 

revo, levo}, we introduce a quadratic programming with the form Eq. (17) and Eq. (18) by taking Eq. (24) as an 

equality constraint, and we get the effective quadratic problem: 

 f(δ) = (y - Bδ)TΛ(y - Bδ) (25) 

where Λ is a diagonal matrix with diagonal elements wp, wq, wr. 

 

Here we present a simulation scenario of the 

operation of this neural network where the controls are 

such as p = 10deg/s, q = r = 0, all actuators are fault free 

except right inboard elevon stuck at zero at 2.1s. The 

time step adopted for time discretization is Δt = 0.05s 

(for sampling the output of neural network to control 

signal). Neural network parameters have been chosen 

such as 1010 replace +∞  numerically in Eq. (19), λ = 

106, wp = 10, wq = 1, wr = 1. 

From Fig. 2, we can see that the neural network 

converges after about 1ms. The time evolution of 

different actuators position and controlled output are 

displayed by Fig. 3 and Fig. 4 respectively. There a star 

symbol is used to denote the failure instant. 

It appears that the neural network solution can 

handle the failure situation satisfactory even if many 

factors such as the dynamics of the actuators, actuators 

deflection rates constraints and dynamic inversion 

controller time lag where not considered.  
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Figure 2. Convergent response of neural network 
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VII. Conclusion 

In this paper, a new approach to manage the control surfaces of an aircraft under an actuator failure scenario has 

been developed. The main objective is to maintain the possibility to perform standard maneuvers with the remaining 

fault free actuators while limiting the structural strain (maximum wing bending and torsion moments) of the aircraft.  

Once the necessary aerodynamics forces and moments to perform the manoeuvre have been computed by 

inversion of the flight dynamics, the contributions of each remaining actuator to the aerodynamic forces and 

moments can be determined on-line by a neural network solving a linear quadratic optimization problem. A 

numerical example considering the use of a neural network to solve on line the actuator reallocation problem has 

been displayed to illustrate the feasibility of the proposed approach for on-line management of the partially failed 

control channels. 
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