A "no-flow-sensor" wind estimation algorithm for unmanned aerial systems - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue International Journal of Micro Air Vehicles Année : 2012

A "no-flow-sensor" wind estimation algorithm for unmanned aerial systems

(1, 2) , (3, 4) , (4) , (1) , (1)
1
2
3
4

Résumé

A "no-flow-sensor" wind estimation algorithm for Unmanned Aerial Systems (UAS) is presented. It is based on ground speed and flight path azimuth information from the autopilot's GPS system. The algorithm has been tested with the help of the simulation option in the Paparazzi autopilot software using artificial wind profiles. The retrieval accuracy of the predefined profiles by the wind algorithm and its sensitivity to vertical aircraft velocity, diameter of the helical flight pattern and different data sampling methods have been investigated. The algorithm with a correspondingly optimized set of parameters is then applied to various scientific flight missions under real wind conditions performed by the UAS SUMO (Small Unmanned Meteorological Observer). The SUMO wind profiles are compared to measurements of conventional atmospheric profiling systems as radiosondes and piloted balloons. In general, the presented "no-flow-sensor" wind estimation method performs well in most atmospheric situations and is now operationally used in the post-processing routine for wind profile determination from SUMO measurements.
Fichier principal
Vignette du fichier
Hattenberger_IJMAV2012.pdf (2.22 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00934666 , version 1 (20-05-2014)

Identifiants

Citer

Stéphanie Mayer, Gautier Hattenberger, Pascal Brisset, Marius Jonassen, Joachim Reuder. A "no-flow-sensor" wind estimation algorithm for unmanned aerial systems. International Journal of Micro Air Vehicles, 2012, 4 (1), pp 15-30. ⟨10.1260/1756-8293.4.1.15⟩. ⟨hal-00934666⟩
385 Consultations
2465 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More