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Abstract

Detecting and solving aircraft conflicts, which occur when aircraft sharing the
same airspace are too close to each other according to their predicted trajectories,
is a crucial problem in Air Traffic Management. We focus on mixed-integer opti-
mization models based on speed regulation. We first solve the problem to global
optimality by means of an exact solver. The problem being very difficult to solve, we
also propose a heuristic procedure where the problem is decomposed and it is locally
exactly solved. Computational results show that the proposed approach provides
satisfactory results.

Keywords: air traffic management, conflict avoidance, MINLP, modeling, global
exact solution, heuristic

1 Introduction

Aircraft sharing the same airspace are said to be potentially in conflict when they are
too close to each other according to their predicted trajectories, that is, their relative
horizontal and vertical distances do not both satisfy two given safety distances. Detection
and resolution of aircraft conflicts, also referred to as aircraft deconfliction, is one of the
most crucial issues in Air Traffic Management (ATM) to guarantee air traffic safety. This
is even more evident observing that the air traffic level currently attained in Europe is
around tens of thousands of flights per day and it is expected to be multiplied by a factor
of two during the next 20 years [17]. The European project SESAR (Single European
Sky ATM Research)[16] gives the guidelines to go towards an Air Traffic Management
characterized by more efficiency and more safety, which should essentially result from
a higher level of automation of ATM. The request for increasing automation of ATM
comes from the observation that the high level of automation that has been introduced
on aircraft in the last 50 years, for example with the Flight Management System, does
not correspond to the level of automation on the ground. In the context of aircraft
conflict detection and resolution, air traffic control is still widely performed manually on
the ground by air traffic controllers watching the traffic movements on a radar screen and
giving instructions to pilots. Therefore, the need for automatical tools to integrate human
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work, shifting responsibilities from the ground to the air, is evident. Increasing levels of
traffic also raise the problem of managing traffic in such a way as to increase the capacity
of control in the air sectors.

Aicraft potential conflicts can be solved in different ways, which lead to different math-
ematical modeling approaches. The most commonly exploited way is based on the idea
of achieving separation changing the trajectory (heading) or the flight level of the aircraft
involved in the conflict. This kind of separation maneuvers is the one usually exploited
by air traffic controllers when they detect a potential conflict. Another way is based on
the idea of separating aircraft by slightly changing their speeds but keeping the predicted
trajectories. A speed regulation which occurs in a reasonable small range (namelly, from
-6% to +3% of the original speed), allows a subliminal control as suggested by the Euro-
pean ERASMUS project [4]. This project showed the advantage of such a control, which
is not perceived by air traffic controllers, and promoted it as an interesting alternative to
the more traditional trajectory change.

Conflict avoidance is expected to be performed while deviating as little as possible from
the original aircraft flight plan, that is, risks of collision should be avoided minimizing
the impact of the separation maneuvers on the flight efficiency. To this aim, various solu-
tion strategies have been proposed for the corresponding optimization problem. A review
is provided in [11]. Solution algorithms are mainly based on evolutionary computation
[8, 5, 7, 6]. Genetic algorithms tailored on the air traffic problem are widely used. These
approaches consist in generating a population of aircraft trajectories from an initial popu-
lation using the basic operators of selection, mutation and crossover, which are performed
taking into account the features of the problem to gain efficiency. The solution space is
a set of finite maneuvers, usually based on heading angle modifications. These methods
are computationally efficient (few CPU time consuming), but the global optimal solution
and even a feasible solution (with no conflicts) is not guaranteed to be achieved in a given
time.

Recent advances in mixed-integer linear and nonlinear programming open new per-
spective for the deconfliction modeling and efficient solution. The first attempt to use
mixed-integer optimization is by Pallottino et al. in [13], where, though under strin-
gent hypothesis, an interesting modeling based on a geometrical construction leads to a
mixed-integer linear programming problem that can be solved by CPLEX. More recently,
mixed-integer programming has been proposed again for aircraft conflict resolution. In
the very recent PhD thesis by Martin-Campo [12] (see also [1, 2]), new nonlinear models
are proposed, starting from a modification of the one in [13]. In [18] a linear model is
obtained for flight levels assignment and speed regulation for conflict avoidance. The
speed regulation strategy is also modeled by mixed-integer programming in recent work
[14, 15] for minimization of potential conflicts.

In this paper, we propose new modeling for aicraft deconfiction based on speed regu-
lation, keeping trajectories unchanged. Mixed-Integer Nonlinear Programming (MINLP)
formulations appear to be the natural candidates for the addressed ATM problems,
where the need for modeling logical choices suggests the simultaneous presence of mixed
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(continuous-integer) variables, and nonlinear constraints arise from separation condition
modeling. In this context, the main challenge is to propose mathematical formulations
which are able to model the complex choices characterizing the target problems without
imposing any unrealistic constraint.

We first compute deterministic global solutions, using a general-purpose solver for
MINLP. To deal with the computational difficulty of the problem, we also propose another
strategy, where the optimality guarantee is forsaken in exchange for the computational
efficiency, but exact solutions are computed locally. This solution strategy is based on
hybridizing mathematical programming and a heuristic tailored on the problem.

The paper is organized as follows. In Section 2 we propose two mixed-integer op-
timization models for aircraft deconfliction based on speed regulation. Section 3 deals
with the computational solution of the considered problem. In subsection 3.2 we discuss
the results of computational experiments carried out with a general purpose global op-
timization solver. The proposed heuristic based on local exact solutions is presented in
subsection 3.3. Some concluding remarks are given in Section 4.

2 Modeling aircraft deconfliction

In a mathematical programming model for deconfliction, the main constraint is repre-
sented by the aircraft separation condition. We therefore first discuss about such condi-
tion. We assume, for the sake of simplicity, that aircraft fly at the same flight level. They
are then identified by 2-dimensional points on a plane and the horizontal separation has
to be respected. The aircraft separation between two aircraft i and j at the instant time
t is expressed by the following condition:

||xr
ij(t)|| ≥ d, (1)

where d is the minimum required separation distance (usually, 5 NM1) and xr
ij(t) is the

relative distance between aircraft i and j.
Under the hypothesis that aircraft speed changes occur instantaneously at a given instant
time t̄, we can consider that uniform motion laws apply before and after t̄. Hence, the
relative position of aircraft i and j can be expressed as the sum of the relative initial
position of aircraft i and j and the product of their relative speed vr

ij by the time:

xr
ij(t) = xrd

ij + vr
ijt ∀t. (2)

Squaring (1), with xr
ij(t) expressed by (2), and deriving with respect to t, one can see

that the minimum is attained for

tm = −
vr
ijx

rd
ij

(vrij)
2
. (3)

11 NM (Nautical Mile) = 1852 m
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Substituting into (1), the following expression for the separation condition is obtained:

(xrd
ij )

2 −
(vr

ijx
rd
ij )

2

(vrij)
2
− d2 ≥ 0. (4)

Note that condition (4) has to be checked only when the inner product vr
ijx

rd
ij is negative.

In this case, indeed, aircraft are converging, generating a potential conflict.
A more classical approach consists in considering the separation constraint in the form

||xr
ij(t)|| = ||xi(t)− xj(t)|| ≥ d ∀t

and discretizing with respect to the time variable t, obtaining a set of constraints each
one corresponding to an instant time. Equation (4) does not depend on the time variable
t anymore, thus reducing the number of constraints. Nevertheless, in our modeling (4) is
imposed in several time windows, as detailed in the following.

We now define mathematical programming models for the aircraft deconfliction prob-
lem such that aircraft separation is based only on speed regulation (other separation
strategies, like heading angle or flight level modification, are not allowed). More precisely,
starting from the known initial position and velocities of aircraft, reasonable small (in the
sense that is precised below) changes in aircraft speeds are performed to have condition
(4) satisfied along the predicted trajectories at each instant time t.

Various objective functions can be considered for the addressed problem. Conflict
avoidance is expected to be performed while deviating as little as possible from the original
aircraft flight plan, that is, risks of collision should be avoided minimizing the impact of
the separation maneuvers on the flight efficiency. To stay as close as possible to the
original flight plan, we minimize the sum of aircraft speed modifications:

min
∑

k∈A

q2k, (5)

where ∀k in the set A of aircraft, qk expresses the speed change of aircraft k. This function
can be slightly modified to take into account the minimization of the time windows when
the speed changes occur, as detailed below.

The decision variables are qk, k ∈ A. These variables are bounded in order to ensure
a “subliminal” speed control, as suggested by the ERASMUS project [4]. Specifically, we
impose that the speed change for aircraft k cannot be greater than +3% and smaller than
−6% of its original speed. Other variables, both continuous and integer (in particular
binary), are also employed in our problem formulation to express the afoarmentioned
separation condition as follows.

In the first and simplest modeling we impose to aircraft an a priori speed change, at
the instant time t = 0, and let them keep the new speed (w.r.t. the original predicted one)
during the whole trajectory. We introduce auxiliary continuous variables for the relative
speed and the inner product vr

ijx
rd
ij in (4) and impose for each pair of aircraft i and j the

separation condition (4). Equation (3) gives rise to a constraint, for each pair of aircraft,
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defining the minimum instant time. To check if tm is greater than 0, a binary variable yij
is introduced for each pair (i,j)

yij =

{

1 if tm ≥ 0
0 otherwise

(6)

and constraints are added accordingly. The separation condition is then checked only
when tm ≥ 0:

∀i, j ∈ A yij
(

xrd
ij (v

r
ij)

2 − (vr
ijx

rd
ij )

2 − (d2(vr
ij)

2)
)

≥ 0, (7)

We now propose a general model, where no conditions are imposed on the order and on
the instant time of separation maneuvers execution. Each aircraft can modify its speed at
any possible instant time ts during its trajectory and go back to its original speed at any
possible instant time t′s. Instant times ts and t′s are so unkown for each aircraft, and for
each pair of conflicting aircraft it is not known the order of the respective instant times
of speed change.

The main idea is then to deal with the different time windows where aircraft fly with
their original (known) speed v or with a changed speed v + q, q representing a possible
positive or negative speed change. Time windows are defined by instant times such that
each aircraft changes its original velocity, i.e., it starts or ends flying with speed v+q. The
speed is constant in each time window because of the assumption of instantaneous speed
changes. In these time windows, aircraft k flyes with speed vk or vk + qk. New decision
variables are introduced, representing the instant times such that aircraft k starts and
respectively ends flying with changed speed:

∀k ∈ A t1k, t2k.

We have t1k ≤ t2k ∀k. Furthermore, t1k and t2k are always ≥ 0 and have an upper bound
T , which represents the time horizon (usually around 20-30 minutes) during which the
air traffic is observed and potential conflicts are solved. The optimization is performed
repeatedly for successive time horizons with length T .

In order to be as close as possible to the original flight plans, the time intervals during
which aircraft fly with a modified speed are also minimized. Thus, the objective function
previously defined is modified in the following way:

min
∑

k∈A

q2k(t2k − t1k)
2. (8)

A number of auxiliary continuous and integer variables are also introduced. Suitable
integer variables are in particular used to describe all possible time configurations.
Due to the fact that t1k, t2k ∀k are unknowns of the problem and their sequential order is
unknown as well, there are in fact 6 possible time configurations for each pair of aircraft.
These are obtained considering the permutations of the 4 instant times characterizing the
situation of a pair of aircraft changing their speed. Given a pair of aircraft i and j, let



2 MODELING AIRCRAFT DECONFLICTION 6

t1i, t1j and t2i, t2j be the instant times when i and j start and respectively end flying with
changed speed. An order for t1i, t2i, t1j , t2j is not a priori known. By permutations of these
instant times, excluding some cases giving rise to inconsistency (i.e., taking into account
that ∀k t1k ≤ t2k and so a time sequence always starts with a t1 instant and ends with a
t2 one), we obtain the following time configurations, where T represents the upper bound
on time instants:

0 ≤ t1i ≤ t1j ≤ t2i ≤ t2j ≤ T (9)

0 ≤ t1j ≤ t1i ≤ t2i ≤ t2j ≤ T (10)

0 ≤ t1i ≤ t2i ≤ t1j ≤ t2j ≤ T (11)

0 ≤ t1j ≤ t2j ≤ t1i ≤ t2i ≤ T (12)

0 ≤ t1i ≤ t1j ≤ t2j ≤ t2i ≤ T (13)

0 ≤ t1j ≤ t1i ≤ t2j ≤ t2i ≤ T. (14)

It is easy to see, taking into account lower (0) and upper bound (T ) for instant times,
that each of these configurations defines 5 time intervals.

Aircraft separation condition has to be imposed in each time interval, for each time
configuration. A number of variables and constraints are so adjoined to the model to
handle all possible configurations.

Firstly, the interval time for speed change must be at least equal to a certain amount
tmin:

∀k ∈ A t2k − t1k ≥ tmin. (15)

To model all possible time configurations we introduce binary variables zℓij , ℓ ∈ {1, . . . , 6},
i, j ∈ A, stating, for each time configuration, what is the order of instant times for that
configuration. For example, the binary variable z1ij , i, j ∈ A, associated to the first time
configuration for the pair (i, j), is such that:

z1ij =

{

1 if t1i ≤ t1j and t1j ≤ t2i and t2i ≤ t2j
0 otherwise

(16)

The following constraint imposes that only one configuration must hold:

∀i, j ∈ A
∑

ℓ∈{1,...,6}

zℓij = 1. (17)

New variables are then introduced to define, for each pair of aircraft, their initial
position in each time interval, their relative distance and their speeds. Distances covered
by aircraft during each time interval are computed exploiting laws of uniform motion
because of the aircraft’s constant speed in each of such intervals. In the h-th time interval
[ts, ts′], h ∈ {1, . . . , 5}, for all aircraft k ∈ A the initial position xkh is given by

xkh = xk(h−1) + (ts′ − ts)v̄k, (18)
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where v̄k is the original speed vk or the changed speed vk + qk, depending on the time
configuration holding. So, (continuous) variables xkh ∀k ∈ A ∀h ∈ {1, . . . , 5}, are in-
troduced and corresponding constraints adjoined to the formulation, expressing for each
aircraft the 5 initial positions in the 5 time intervals. Each aircraft k has speed v̄k equal
to its original speed or to the changed speed depending on the time configuration, so that
variables zℓ are used to identify the configuration holding. Relative distances xrd

ij and
relative speeds vrij between aircraft are also defined, for each time configuration and each
time interval, and constraints adjoined accordingly using variables xkh and again zℓ.

Further constraints are then adjoined to the model to impose the condition (4) in each
of the 5 time intervals, when tm ∈ [ts, ts′], where [ts, ts′] is the h-th time interval. In order
to check if tm ∈ [ts, ts′], binary variables are used. For all h ∈ {1, . . . , 5} a binary variable
ylh is introduced such that ylh = 1 if tsh ≤ tmh and 0 otherwise, yrh is such that tmh ≤ ts′h
and 0 otherwise. The following constraints are then imposed:

∀h ∈ {1, . . . , 5} tsh ≤ tmh +M(1 − ylh), tmh ≤ tsh +Mylh (19)

tmh ≤ ts′h +M(1− yrh), ts′h ≤ tmh +Myrh (20)

where M is a sufficiently large constant. Condition (4) is then imposed for each time
configuration ℓ ∈ {1, . . . , 6}, ∀h ∈ {1, . . . , 5} and i, j ∈ A, as follows:

(

ylhyrh

(

(xrd
ijh)

2 −
(vrijhx

rd
ijh)

2

(vrijh)
2
− d2

))

≥ 0. (21)

Finally, for each time interval, the following separation condition is also imposed:

∀h ∈ {1, . . . , 5}, ∀i, j ∈ A (xrd
ijh)

2 ≥ d2. (22)

3 Solving aircraft deconfliction

3.1 Test problems generation

Let us consider as a testbed a set of n aircraft in 2-dimensional space, placed on a circle
of a given radius r, with initial speed v and trajectory defined by a heading angle such
that aircraft fly pointing toward the center of the circle (or slightly deviating with respect
to such direction). The zone of conflict is around the center of the circle where aircraft
are placed, and each aircraft may be in conflict with each other. In our computational
experiments, we considered a time horizon T = 30 minutes, the standard separation
distance d = 5 NM, initial speed equal to v = 4 × 102 NM/h for all aircraft and heading
angles randomly generated varying between ±5 degrees with respect to the trajectories
pointing toward the center of the circle. All aircraft are in conflict with each other, so
that a number of conflicts equal to n(n− 1)/2 is generated in the same conflict zone. See
Figure 3.1. This kind of test problem, though does not correspond to a realistic situation,
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represents a good trade-off between simplicity of illustration and difficulty of resolution,
to stress models and algorithms for deconfliction. It has been already used to this aim
(see, e.g. [6]).

Figure 1: n conflicting aircraft flying towards the center of a circle.

Results discussed in the following are obtained on a 2.4 GHz Intel Xeon CPU of a
computer with 8GB RAM shared by three other similar CPU running Linux.

3.2 Global exact solution

We implemented the proposed models using the AMPL modeling language [9].

We first employ a general purpose global optimization solver for MINLP to solve the
addressed problem to global optimality. The solver of choice is COUENNE [3], which imple-
ments a spatial Branch-and-Bound based on convex relaxations. Results are reported in
Table 1 for the first proposed model. For each problem instance (given by a number n of
aircraft and a radius r of the circle representing the considered airspace) we report the
objective function value and the CPU time to solve the problem. We are able to obtain
global exact solutions up to n = 6, i.e. 15 conflicts. Objective function values show that
aircraft separation is always achieved with very slight speed changes.

ID n r obj CPU time
(sec.)

pb n2 2 1 ×102 0.002531 0.15
pb n3 3 2 ×102 0.001667 1.45
pb n4 4 2 ×102 0.004009 12.87
pb n5 5 3 ×102 0.003033 841.33
pb n6 6 3 ×102 0.006033 51863.37

Table 1: Conflict resolution for n aircraft flying towards the centre of a circle of radius
r: objective function value and CPU time. Global optimal solutions are obtained with
COUENNE.

Increasing the number of aircraft n, the number of variables, in particular of binary
variables used to model logical choices, and the number of constraints largely increases,
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thus growing the size of the search tree to explore. Hence, the time to reach the leaves of
the tree, which represent optimal solutions, may become very high. Hence, as expected
for a Branch-and-Bound algorithm, high memory and time requirements do not allow us
to obtain optimal solutions for larger dimensions of the problem.

Results in Table 1 refer to the relaxed modeling where we assume that aircraft change
their speed at t = 0 to achieve trajectory separation. The more general model that
we propose in Sect.2 is, as expected, more computationally challenging, due specially to
the larger number of binary variables and constraints used to model time configurations
and time intervals. Therefore, we expect to solve to global optimality only small-size
problems. For the sake of illustration, we describe computational results obtained with
the most general model on problem instances involving a pair of aircraft. Results are
given in Table 2. Aircraft are again supposed to move from an initial position given, in
2-dimensional space, on a circle (r = 1 × 102 NM) with v = 4 × 102 NM/h. Keeping
the original speed, the aircraft would reach the center of the circle in 15 minutes. The
problem is simplified in such a way that aircraft k is assumed to change its speed on an
instant t1k and keep the new speed. For each instance we report data details, given by
the heading angles of the two aircraft, and solution details, given by velocity change (qk)
and instant time when the speed change occurs (t1k) for aircraft k, objective function
value and CPU time. Again, objective function values show that slight speed changes
are sufficient to achieve separation. CPU times are less then 2 seconds, thus showing
that even the general model is promising for optimal deconfliction in reasonable time for
small-scale problems.

We note that symmetric equivalent solutions are possible for the considered test prob-
lem, where for pairs of aircraft we can swap their roles. Spatial Branch-and-Bound al-
gorithms, like the one implemented in COUENNE, suffer from the presence of symmetries,
which led to very large Branch-and-Bound trees. Simple symmetry breaking constraint
like

qi ≤ qj ∀i, j ∈ A, i < j, (23)

adjoined to the formulation, may help to speed up the resolution. However, they are
not considered in our study, because they correspond to an unrealistic modeling of the
addressed ATM problem.

aircraft 1 aircraft 2 obj CPU time
(sec.)

heading q1 t11 heading q2 t12
0 0.943639 0.00611072 1/2 π 1.0249 0.115235 0.000866779 1.99
0 -0.000001 3.84848e-7 3/4 π 0 0.373206 6.76119e-14 0.08
0 0 0.999991 5/4 π -0.648046 0.0732228 1.59283e-11 1.40

Table 2: Conflict resolution for 2 aircraft: optimal solutions and CPU time. The more
general proposed model is used.
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3.3 A heuristic based on local exact solutions

From the numerical results discussed in the previous section, it appears that an exact
solution algorithm for the addressed problem easily turns to be high memory and time de-
manding, due to the high number of conflicts and the number of variables and constraints
largely increasing with n. However, we also note that on problem instances involving a
small number of aircraft at a time, say 3-4 aircraft, a global solution can be efficiently
computed. Based on this observation, we propose a solution procedure which is based
on the idea of decomposing the overall problem into subproblems involving only a small
number of aircraft and performing deconfliction on these subproblems, then combining all
local solutions. The overall procedure is heuristic, based on Mathematical Programming
and local exact solutions, in a matheuristic framework.

When dealing with aircraft conflict avoidance, one naturally looks at subproblems of
the original one. In a realistic situation, the airspace section under consideration is a
quite large portion of the airspace covering the trajectories of a large number of aircraft,
among which generally only small groups of aircraft with close trajectories get potentially
in conflict. This led some authors to introduce the concept of cluster.

Let a cluster be the transitive closing on conflicting pairs of aircraft (see [10]). The
heuristic is based on the idea of solving the deconfliction problem on clusters involving up
to 4 aircraft at a time. Let ncl be the number of clusters. This number, and the aircraft
therein, can be detected by a suitable pre-processing. The heuristic proceeds iteratively
until deconfliction is successfully performed, or a given stopping criterion is satisfed. At
each step, ncl deconfliction problems, one for each aircraft cluster, are sequentially solved
by using an exact solver. Combining together all the results, one cannot expect in general
to have all conflicts solved. This is because aircraft inside clusters may be in conflict also
with aircraft inside other clusters. Should all conflicts be solved, the whole problem is
solved and its solution is locally optimal. When this is not the case, that is, the number
of remaining conflicts is greater than 0, a new step is performed. The next iteration is
made in such a way to preserve as much as possible the information outcoming from the
previous solution. To do so, the initial speed (which together with the initial position
represents the data of the problem) of aircraft that are still in conflict is re-initialized
taking into account the solution obtained at the previous step. More precisely, if the
(optimal) solution obtained for cluster i is such that an aircraft in this cluster has been
accelerated with respect to its original speed, then its speed is modified by a random slight
further increase. If it has been decelerated, then its speed is modified by a random slight
further decrease. In this way, the information obtained at the previous step is preserved
and the chances to keep deconfliction inside clusters increase.

To update the aircraft speeds, a simple local search is performed. A number of can-
didates in the neighboroods of the initial speed values are tested, choosing the one that
minimize a measure of the conflict severity. Specifically, we consider as such a measure the
sum, over all conflicting aircraft, of the maximum violation of the separation constraints
for each considered aircraft, relativized by dividing by the number of remaning conflicts.
When one only conflict is to be solved, this search is intensified testing a larger number
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of candidates to increase the chances to solve the problem.

According to the ERASMUS directives, aircraft speed changes have to be bounded in
the small range [−6%v,+3%v], v being the original speed. To fulfill this requirement,
when speeds are modified during the algorithm, these bounds are checked and speeds
adjusted accordingly. This may eventually lead to change the speed scenario provided by
local exact solutions.

A sketch of the proposed algorithm is given in Alg. 1. It may be intended as a general
framework, where, starting from the same basic idea tailored on the problem, one can
implement different local solution computations and local searches.

Algorithm 1 Aircraft Deconfliction
/* n = number of aircraft; ncl = number of aircraft clusters; vi = speed of aircraft i */
/* maxit = number of allowed iterations; nconfl = number of aircraft conflicts */
Require: n, ncl, vi ∀i = {1, . . . , n}
compute nconfl, it← 0
while (nconfl > 0 and it < maxit) do

it← it+ 1
for all k ≤ ncldo solve the deconfliction problem k (→ compute new speeds v̄i)
compute nconfl
if nconfl > 0 then

for all conflicting aircraft j do

if v̄j > vj then randomly increase v̄j
else randomly decrease v̄j
choose v̄j to have min f =

∑

j (max violation of separation constraints)/nconfl
end for

end if

check if ∀i ≤ n v̄i ∈ [−6%vi,+3%vi]
for all i ≤ n do

if v̄i /∈ [−6%vi,+3%vi] then randomly change v̄i to have v̄i ∈ [−6%vi,+3%vi]
end for

end while

Return: final speeds, objective function value

Results are reported in Table 3.3. Values are averaged over 10 runs. For all test
problems, all conflicts have been solved (nconfl = 0). Objective function values show
that deconfliction is always achieved with very slight speed changes. Comparing the
solutions obtained on pb1 using 1 cluster (direct solution on Table 1) or 2, it appears that
decomposing the problem does not significantly affect the quality of the result. While for
n = 4 a direct solution is, as expected, more convenient, increasing n faster solutions are
obtained using a higher number of smaller subproblems. The sharp bound imposed on
speeds changes to perform a subliminal control is responsible of the most of the execution
time. This subliminal control is anyway performed in reasonable time even on problems
involving many conflicts at a time.
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ID n r ncl obj CPU time
(sec.)

pb n4 4 2 ×102 2 0.005151 26.97
pb n5 5 3 ×102 2 0.004729 17.98
pb n6 6 3 ×102 2 0.006402 17.33
pb n6 6 3 ×102 3 0.007438 341.12
pb n7 7 3 ×102 2 0.009215 131.34
pb n7 7 3 ×102 3 0.008144 22.99
pb n8 8 4 ×102 2 0.008220 759.40
pb n8 8 4 ×102 3 0.007551 39.66
pb n8 8 4 ×102 4 0.012034 48.99
pb n9 9 4 ×102 3 0.009238 97.41
pb n10 10 4 ×102 3 0.014047 484.49

Table 3: Conflict resolution for n aircraft flying towards the centre of a circle of radius
r: objective function value and CPU time. Solutions are obtained with the proposed
heuristic beased on local exact solutions on ncl clusters.

4 Conclusion

We discussed about modeling and solving a challenging problem arising in Air Traffic
Management, namely the problem of aircraft conflict resolution, via mixed-integer opti-
mization. We proposed new MINLP formulations for deconfliction based on speed regula-
tion, where conflicts are avoided allowing aircraft to only accelerate or decelerate, without
any change in their trajectory. We first considered a speed regulation occurring at the
instant time t = 0, modifying the initial speed of aircraft with respect to the original
predicted one. We then proposed a modeling where speed regulation occurs during time
windows in such a way that aircraft fly with a modified speed in a time interval and then
go back to their previous speeds. Speed changes and time intervals when they occur are
minimized jointly.

We solved the problem using a general purpose deterministic global optimization solver,
showing that mixed-integer optimization programs for aircraft deconfliction solved by
deterministic global optimization provides promising results. We also proposed a heuristic
tailored on the problem and based on locally solving the problem to global optimality,
which provides good quality results for medium-scale problems.

Future work will address alternative mathematical programming formulations and pos-
sible reformulations of the proposed ones. From the point of view of solution approaches, a
comparison with a Branch-and-Bound based on interval arithmetic and the further devel-
opment of hybrid strategies, combining the above deterministic approaches with suitable
heuristic ones, could provide interesting insights.
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