C. Adjiman, S. Dallwig, C. Floudas, and A. Neumaier, A global optimization method, ??BB, for general twice-differentiable constrained NLPs ??? I. Theoretical advances, Computers & Chemical Engineering, vol.22, issue.9, pp.1137-1158, 1998.
DOI : 10.1016/S0098-1354(98)00027-1

C. S. Adjiman, I. P. Androulakis, and C. A. Floudas, A global optimization method, ??BB, for general twice-differentiable constrained NLPs???II. Implementation and computational results, Computers & Chemical Engineering, vol.22, issue.9, pp.1159-1179, 1998.
DOI : 10.1016/S0098-1354(98)00218-X

F. Al-khayyal and H. Sherali, On Finitely Terminating Branch-and-Bound Algorithms for Some Global Optimization Problems, SIAM Journal on Optimization, vol.10, issue.4, pp.1049-1057, 2000.
DOI : 10.1137/S105262349935178X

D. Andersen and K. Andersen, Presolving in linear programming, Mathematical Programming, vol.5, issue.2, pp.221-245, 1995.
DOI : 10.1007/BF01586000

I. P. Androulakis, C. D. Maranas, and C. A. Floudas, ?BB: A global optimization method for general constrained nonconvex problems, Journal of Global Optimization, vol.3, issue.3, pp.337-363, 1995.
DOI : 10.1007/BF01099647

K. Apt, Principles of Constraint Programming, 2003.
DOI : 10.1017/CBO9780511615320

P. Belotti, S. Cafieri, J. Lee, and L. Liberti, Feasibility-Based Bounds Tightening via Fixed Points, Combinatorial Optimization, Constraints and Applications (COCOA10), pp.65-76, 2010.
DOI : 10.1007/978-3-642-17458-2_7

URL : https://hal.archives-ouvertes.fr/hal-00979219

P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter, Branching and bounds tighteningtechniques for non-convex MINLP, Optimization Methods and Software, vol.24, issue.4-5, pp.597-634, 2009.
DOI : 10.1080/10556780903087124

F. Benhamou, F. Goualard, L. Granvilliers, and J. F. Puget, Revising hull and box consistency, Proceedings of the 1999 international conference on Logic programming Massachusetts Institute of Technology, pp.230-244, 1999.

R. Bixby, S. Ceria, C. Mczeal, and M. Savelsbergh, An updated mixed integer programming library: Miplib 3, 1998.

L. Bordeaux, Y. Hamadi, and M. Vardi, An Analysis of Slow Convergence in Interval Propagation, Principles and Practice of Constraint Programming, pp.790-797
DOI : 10.1007/978-3-540-74970-7_56

M. Bussieck, Globallib ? a collection of nonlinear programming problems, 2004.

M. Bussieck, A. Drud, and A. Meeraus, MINLPLib???A Collection of Test Models for Mixed-Integer Nonlinear Programming, INFORMS Journal on Computing, vol.15, issue.1, 2003.
DOI : 10.1287/ijoc.

D. 'ambrosio, C. Frangioni, A. Liberti, L. Lodi, and A. , Experiments with a feasibility pump approach for nonconvex MINLPs, Symposium on Experimental Algorithms, 2010.

B. Davey and H. Priestley, Introduction to Lattices and Order, 2nd edn, 2002.

E. Davis, Constraint propagation with interval labels, Artificial Intelligence, vol.32, issue.3, pp.281-331, 1987.
DOI : 10.1016/0004-3702(87)90091-9

J. Falk and R. Soland, An Algorithm for Separable Nonconvex Programming Problems, Management Science, vol.15, issue.9, pp.550-569, 1969.
DOI : 10.1287/mnsc.15.9.550

B. Faltings, Arc-consistency for continuous variables, Artificial Intelligence, vol.65, issue.2, pp.363-376, 1994.
DOI : 10.1016/0004-3702(94)90022-1

L. Foulds, D. Haughland, and K. Jornsten, A bilinear approach to the pooling problem???, Optimization, vol.28, issue.1-2, pp.165-180, 1992.
DOI : 10.1145/1111246.1111247

E. Freuder, A Sufficient Condition for Backtrack-Free Search, Journal of the ACM, vol.29, issue.1, pp.24-32, 1982.
DOI : 10.1145/322290.322292

J. Hooker, Integrated methods for optimization, 2007.
DOI : 10.1007/978-1-4614-1900-6

E. Hyvönen, Constraint reasoning based on interval arithmetic: the tolerance propagation approach, Artificial Intelligence, vol.58, issue.1-3, pp.71-112, 1992.
DOI : 10.1016/0004-3702(92)90005-I

A. Land and A. Doig, An Automatic Method of Solving Discrete Programming Problems, Econometrica, vol.28, issue.3, pp.497-520, 1960.
DOI : 10.2307/1910129

Y. Lebbah and O. Lhomme, Accelerating filtering techniques for numeric CSPs, Artificial Intelligence, vol.139, issue.1, pp.109-132, 2002.
DOI : 10.1016/S0004-3702(02)00194-7

URL : http://doi.org/10.1016/s0004-3702(02)00194-7

L. Liberti, Writing global optimization software Global Optimization: from Theory to Implementation, pp.211-262, 2006.

L. Liberti, Reformulations in Mathematical Programming: Definitions and Systematics, RAIRO - Operations Research, vol.43, issue.1, pp.55-86, 2009.
DOI : 10.1051/ro/2009005

L. Liberti, N. Mladenovi´cmladenovi´c, and G. Nannicini, A Good Recipe for Solving MINLPs, Annals of Information Systems, vol.10, pp.231-244, 2009.
DOI : 10.1007/978-1-4419-1306-7_9

L. Liberti, S. L. Roux, J. Leconte, and F. Marinelli, Mathematical programming based debugging, Proceedings of the International Symposium on Combinatorial Optimization, pp.1311-1318, 2010.
DOI : 10.1016/j.endm.2010.05.166

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Messine, Méthodes d'optimisation globale basées sur l'analyse d'intervalle pour la résolution de probì emes avec contraintes (in French), 1997.

F. Messine, Deterministic global optimization using interval constraint propagation techniques, RAIRO - Operations Research, vol.38, issue.4, pp.277-294, 2004.
DOI : 10.1051/ro:2004026

R. Moore, Interval Analysis, 1966.

R. Moore, Methods and Applications of Interval Analysis, SIAM, 1979.
DOI : 10.1137/1.9781611970906

S. Roman, Lattices and Ordered Sets, 2008.

H. Ryoo and N. Sahinidis, Global optimization of nonconvex NLPs and MINLPs with applications in process design, Computers & Chemical Engineering, vol.19, issue.5, pp.551-566, 1995.
DOI : 10.1016/0098-1354(94)00097-2

N. Sahinidis, Global Optimization and Constraint Satisfaction: The Branch-and-Reduce Approach, Global Optimization and Constraint Satisfaction, pp.1-16, 2003.
DOI : 10.1007/978-3-540-39901-8_1

N. Sahinidis and M. Tawarmalani, BARON 7.2.5: Global Optimization of Mixed-Integer Nonlinear Programs, 2005.

M. Savelsbergh, Preprocessing and Probing Techniques for Mixed Integer Programming Problems, ORSA Journal on Computing, vol.6, issue.4, pp.445-454, 1994.
DOI : 10.1287/ijoc.6.4.445

H. Schichl and A. Neumaier, Interval Analysis on Directed Acyclic Graphs for Global Optimization, Journal of Global Optimization, vol.149, issue.1&2, pp.541-562, 2005.
DOI : 10.1007/s10898-005-0937-x

J. Shectman and N. Sahinidis, A Finite Algorithm for Global Minimization of Separable Concave Programs, Journal of Global Optimization, vol.12, pp.1-36, 1998.
DOI : 10.1007/978-1-4613-3437-8_20

E. Smith, On the optimal design of continuous processes, 1996.

E. Smith and C. Pantelides, A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs, Computers & Chemical Engineering, vol.23, issue.4-5, pp.457-478, 1999.
DOI : 10.1016/S0098-1354(98)00286-5

M. Tawarmalani and N. Sahinidis, Global optimization of mixed-integer nonlinear programs: A theoretical and computational study, Mathematical Programming, vol.99, issue.3, pp.563-591, 2004.
DOI : 10.1007/s10107-003-0467-6

X. H. Vu, H. Schichl, and D. Sam-haroud, Interval propagation and search on directed acyclic graphs for numerical constraint solving, Journal of Global Optimization, vol.33, issue.3, pp.499-531, 2009.
DOI : 10.1007/s10898-008-9386-7

D. Waltz, Understanding the line drawings of scenes with shadows The Psychology of Computer Vision, pp.19-91, 1975.

G. Ziegler, Lectures on Polytopes, 1995.
DOI : 10.1007/978-1-4613-8431-1