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Abstract- Due to air traffic growth and especially hubs
development, major European airports can easily be-
come bottlenecks in the global air transportation net-
work. Therefore, accurate models of airport traffic pre-
diction become more and more necessary for ground
controllers.

In this paper, a ground traffic simulation tool is pro-
posed and applied to Roissy Charles De Gaulle airport.
Two global optimization methods, using genetic algo-
rithms at the airport, are developed to minimize taxi-
ing time while respecting aircraft separation and run-
way capacities.

In order to compare the efficiency of the different
methods, simulations are carried out on a one day traf-
fic sample, and ground delay is correlated to the traffic
density at the airport.

1 Introduction

Traffic delay due to airport congestion and ground opera-
tions becomes more and more penalizing in the total gate-
to-gate flight cycle. This phenomenon can be in a large part
attributed to recent hubs development, as all departures and
arrivals are tending to be scheduled at the same time. More-
over, many ATC1 and ATM2 inefficiencies can appear as a
result of taxi queueing and take-off time uncertainty. As a
consequence, airport ground traffic simulation tools become
essential for airport designers and traffic managers. Highly
detailed models of airport operations already exist, such as
SIMMOD (SIMulation MODel, developed by the Federal
Aviation Agency) or TAAM (Total Airspace and Airport
Modeler, developed by the Preston Group [Gro99]). They
can be useful to evaluate qualitatively the relative effects of
various airport improvements.

In the context of the A-SMGCS concepts (Advanced
Surface Movement Guidance & Control System), all the
ground traffic information is supposed to be directly avail-
able for the ATC and many tools could be developed to as-
sist ground controllers.

In this paper, a ground traffic simulation tool with a con-

1ATC: Air Traffic Control
2ATM: Air Traffic Management

flict resolution module is introduced in part 2. Parts 3 and
4 describe the different optimization methods used to find
the best trajectory and the most adapted holding points for
taxiing aircraft. In the last part, these optimization methods
are applied on a one day traffic sample at Roissy Charles
De Gaulle airport considering the operational airport con-
figurations and speed uncertainties, and the results of the
simulations are compared.

2 Ground traffic simulation

The ground traffic simulator used for this study is associ-
ated with a detailed airport model in order to assign a set of
realistic paths to each aircraft.

Traffic prediction is regularly computed according to a
given speed uncertainty. Algorithms estimate the best ma-
neuvers that can be executed by each aircraft to ensure taxi-
ing separations and runway sequencing while optimizing a
global criteria such as the total delay.

This part briefly sums up the main topics concerning this
ground traffic simulator.

2.1 Problem modelling

Inputs

The simulator inputs are the airport topological description,
the aircraft types with their corresponding weight categories
and a one day traffic sample at the airport.

A flight is described by its recorded flight-plan, contain-
ing the aircraft type, the runway and the gate used, and the
departure or arrival time.

The aircraft type information enables the evaluation of
the needed takeoff or landing distance, in order to select the
possible runway entry or exit points. Moreover, it is also as-
sociated with a wake turbulence category, which determines
the time separation between two aircraft (one, two or three
minutes) on the runway.

Paths assignment

The airport is modelled as a graph linking its gates, taxi-
ways and runways. Each link is assigned a cost, which is
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Figure 1: Airport graph
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Figure 2: Aircraft multiple possible positions

an evaluation of the time spent by an aircraft when it pro-
ceeds via this link, added to some particular penalty related
to runway areas, gate access or undesirable directions.

Classical graph algorithms can be used:

• The Dijkstra algorithm [AMO93] computes all the
best paths and their corresponding minimal cost from
a given node to every other ones.

• A k shortest loopless path enumeration algorithm
[MPS97] can make use of the Dijkstra’s result to find
an acceptable set of different paths for each origin-
destination (figure 1).

2.2 Conflict detection

Separation rules

A first model of aircraft separation rules consisted in the
assignment of a maximal capacity to each portion of the
airport graph. These capacities were defined as a linear
function of the length of the taxiway portion. However,
this model had to be refined as it could not ensure realistic
aircraft separations near taxiways intersections nor manage
dependent taxiways.
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Figure 3: Uncertainty reduction on holding points

As a consequence, a discrete model of separation rules is
defined as follows:

• The distance between two taxiing aircraft must never
be less than 60 meters, except at the gate position.

• On the runway, a time separation of 1, 2 or 3 minutes
(depending on the aircraft category) is necessary after
a take off to clear next take off or landing from wake
turbulence.

• When an aircraft is taking off or landing on a given
runway, other aircraft can be taxiing in the same run-
way area only if they are behind it.

• When an aircraft is following an other one, its speed
uncertainty is reduced (as the pilot won’t go faster
than the first one), so that the two aircraft are consid-
ered to be separated.

When the traffic prediction does not respect one of these
rules, the two involved aircraft are calleda conflicting pair.

Speed uncertainty

Each aircraft trajectory is predicted with a given speed un-
certainty, fixed as a constant percentage of the nominal
speed (which is function of procedures and turning rate).

Therefore, an aircraft is considered to occupy several
possible positions at a given time (as shown figure 2).

Aircraft possible maneuvers

In order to ensure separations, aircraft trajectories can be
modified by ground control orders. For each aircraft, a con-
trol order is defined by:

• The path that the aircraft must follow, chosen among
the set of remaining possible paths for this aircraft;

• Optionally, a position where the aircraft must wait
and a time ending this wait.

Simulation steps

Prediction∆
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Figure 4: Shifted windows

Thus, the length of the segment representing the several
possible positions of an aircraft is reduced when and where
the aircraft is expected to wait, as the reference is a precise
position and a precise end waiting time.

For an arriving aircraft, the waiting position can be in the
air (this means that the aircraft is asked to slow down before
landing). In this special case and to keep the simulation
realistic, the delay cannot exceedλ seconds (usuallyλ = 30
seconds).

Clusters

In order to lower the complexity of the problem as often as
possible, a transitive closure is applied on conflicting air-
craft pairs and gives the different clusters of conflicting air-
craft [DAN96]. The different clusters will be solved inde-
pendently at first.

If the separated resolution of two clusters creates new
conflicting positions between them, the two clusters are
merged and the resultant cluster is solved.

2.3 Simulation steps

Shifted windows

The simulator works with a prediction time windowTw

shifted every∆ minutes.
When the simulated current time ist, flight-plans ex-

pected to land or to leave the gate in the time range[t; t+Tw]
are activated: a set of appropriate paths is assigned to each
of them and the resulting best trajectories are added to the
ones of the already taxiing aircraft.

The conflict detection and resolution is performed in the
time window and the resulting maneuvers are applied to
build the new situation∆ minutes later. The problem is then
reconsidered at the new simulation stept+∆ (see figure 4).

Global criteria to optimize

The global criteria to minimize is defined by the total taxi-
ing time (including the time spent queueing for runway),
increased by the time spent in lengthened trajectories.

With this definition, lengthening trajectory appears to be
twice more penalizing than holding position.



3 The One-to-n method

This resolution method, called 1-to-n, treats a simplified
problem. Aircraft are initially sorted and considered one
after the other: first considered aircraft have priority on last
considered ones.

The optimization problem is therefore reduced to one
aircraft: the algorithm must find the best path and the best
holding positions for the aircraft, taking into account theal-
ready considered aircraft trajectories.

3.1 The Branch & Bound algorithm

The 1-to-n method used in [BDA99] to find the best solution
for an aircraft avoiding some other ones had to be refined
in order to take into account the limited time windowTw

and the speed uncertainties. However, this method is still
modelled as a shortest path finding problem in a graph:

• A node of the graph represents a position of the air-
craft, in a pathpi at timet.

• If the position conflicts with another aircraft, the node
have no son. Otherwise, it has two sons, correspond-
ing to the two possible choices for the aircraft at each
time step: go forward or hold position.

• The root nodes are defined by the current position of
the aircraft at current timet0 on each remaining path
p. The initial cost (to reach each root node) is the time
length of the path.

• The terminal nodes are the ones describing a non con-
flicting position of the aircraft at the end of the time
window (t = t0 + Tw).

As the problem is to minimize delay, it is always better
(when possible) to go forward than to hold position: thus, a
Branch & Bound (instead of an A*) algorithm with a best
first search strategy ([HT95]) can quickly find the best solu-
tion for the aircraft (or prove that there is no solution)

3.2 Initial classification

As last considered aircraft are extremely penalized (they
must avoid all first considered aircraft) the way to sort
aircraft, called the classification, is a determining factor.
Moreover, the classification must respect some constraints:

• As landing aircraft cannot hold position before exit-
ing runway, their priority level must be higher than all
taking off aircraft on the same runway.

• Departures queueing for runway should be sorted ac-
cording to their position in the queue.

Therefore, a timeTai
is computed for each aircraftai as

follows:
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Figure 5: Classification reviews

• Tai
= t0 + tr for departures, wheret0 is the current

simulation time andtr is the minimal remaining time
until the runway.

• Tai
= Tland − δland for arrivals, wheretland is the

expected landing time andδland the landing priority
(1 hour for example).

Aircraft are sorted according to increasing values ofTa.

3.3 Classification reviews

Due to the limited time window for traffic predictions and
speed uncertainties influence, the resolution of the current
situation (at timet0) can be very different than the previous
one (at timet0 − ∆), so that some aircraft can finally be in
a position with no solution. A common example is the one
of an aircraft leaded in front of another one without having
priority on it.

In order to manage these cases, the classification can be
reviewed: when the algorithm cannot find any solution for
an aircraftai, the penalizing aircraftaj(j < i) is identified,
and the process is restarted after insertingai beforeaj in
the classification (see figure 5).

4 Genetic algorithms

4.1 Principles

Two methods using classical Genetic Algorithms [Gol89,
Mic92] with partially separable functions and their adapted
crossover and mutation operators as presented by N. Durand
in [DA98] are developed and compared.

• The first method, calledGA WAIT , looks for an op-
timal association of paths and holding positions for
aircraft. It was already developed in [BDA99], and
was directly adapted to the new airport structure and
traffic model.

• The second method, calledGA SORT, looks for an
optimal association of paths and priority levels for air-
craft. It is combined with the Branch and Bound al-
gorithm described in part 3.



As the two methods implementation is very similar, they
are simultaneously described in the next sections.

4.2 Data structure

For both methods, an element of the population (a chromo-
some) must be a set of parameters describing theN aircraft
trajectories during the considered time window.

In order to keep the partial separability of the problem,
each aircraft trajectory must be associated with its specific
parameters, as detailed below.

Encoding for GA WAIT

In this method, a chromosome is defined by3N variables:
{(ni, t0i, t1i)}1≤i≤N

ni is the number of the path that the aircraftai must fol-
low (chosen among the set of remaining possible paths for
the aircraft) and[t0i; t1i[ the laps of time during witch it
must hold position (ift0i ≥ t1i, the aircraftai does not
stop).

Encoding for GA SORT

A chromosome is here defined by2N variables:
{(ni, pi)}1≤i≤N

ni is the number of the path that the aircraftai must
follow (as for GA WAIT), and pi is its priority level,
in the range[1, ..., N ]. The encoding must ensure that
(pi)(1≤i≤N) is a deterministic classification:

∀i 6= j, pi 6= pj (1)

In this way, theN aircraft trajectories can be developed
by running the Branch & Bound algorithm with the classifi-
cation obtained with(pi), restricted to one path per aircraft,
given by(ni).

4.3 Fitness function

Both methods are implemented with the same fitness func-
tion, in harmony with the global criteria to optimize (see
part 2.3) constrained by the separation rules (see part 2.2).

The information needed for the evaluation of theN tra-
jectories is stored in a fitness matrixM (see figure 6).

• mii = di+2.li represents the delay penalty of aircraft
ai. di is the time spent in holding position andli the
time spent in lengthened trajectory due to the pathni.

• mij is the number of conflicts between aircraftai and
aj .

To ensure that a chromosome describing a situation with-
out any conflict is always better than a situation with a con-
flict, the fitness functionF is defined as follows:

d  + 2li i cij

cij

1 i j N

N

1

i

j

Figure 6: Fitness matrix

If the fitness matrix is diagonal (no conflict),

F =
1

2
+

1

2 +
∑N

i=1 mii

(F > 1
2 )

Otherwise:

F =
1

2 +
∑

i<j mij

(F < 1
2 )

Moreover, a local fitnessfi (to be minimised) can be as-
signed to aircraftai:

fi = mii + K
∑

j 6=i

mij

WhereK ≫ mii (for example:K = 10Tw).
These local fitness are used to orient the crossover and

mutation operators (see part 4.5).

4.4 Initial population

The initial population is generated with some heterogeneous
random functions, as the best solutions are more expected to
be in some particular subspaces:

• Values ofni for which li (time lengthening) is low,
for both encodings;

• Low waits for GA WAIT: t0i ≃ t1i;

• Priority levels(pi) for GA SORT near the ones cor-
responding to the classification by expected runway
access time(Tai

), defined in part 3.2.

4.5 Crossover and mutation

The crossover operator used for both methods is the one
described in [BDA99] (see figure 7), applying the principles
described in [DA98] with the local fitnessfi.
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Figure 7: Crossover operator

The aim of this crossover operator is to increase the prob-
ability of generating children with a better fitness than their
parents:

• when the local fitnessfi of an aircraft ai is far
greater in one of the two parents, the two children di-
rectly inherit of its associated variables(ni, t0i, t1i)
or (ni, pi) (see figure 4.5).

• when the local fitnessfi of the two parents are sim-
ilar, the children inherit of a combination of the two
versions of the associated variables.

The mutation operator randomly modifies the parameters
of an aircraft having one of the worst local fitness.

In the GA SORT encoding, the new elements of the pop-
ulation must be formated before insertion in the population,
in order to restore the classification constraints (1).

4.6 Fitness matrix computation

GA WAIT

To compute the fitness matrix (for a chromosome evalua-
tion) in the GAWAIT method, the aircraft trajectories are
built according to the3N variables and a conflict detection
between each pair of aircraft is performed.

The conflict detection is the most penalizing operation:
each of theN aircraft can haveδTw positions at each time
step (δ is the speed uncertainty ratio). An elementary con-
flict detection (between two aircraft at a given time step) is
implemented inO(δTw) operations.

Therefore, the whole conflict detection is achieved in
O(Tw ∗ N2 ∗ (δTw)) = O(δN2Tw

2) operations.
As the time to solve the problem would be limited in an

operational context, the evaluation process is accelerated by
keeping themij values of the fitness matrix when a pair
(i, j) is unchanged after a crossover or mutation operation.

GA SORT

In the GA SORT method, the Branch & Bound algorithm
described in part 3 (limited to a single path per aircraft) is
used to develop sequentially all aircraft trajectories, with the
classification given by(pi).

If there is no solution for an aircraftai, the penalizing
aircraftaj (pj < pi) is identified by the Branch & Bound
algorithm, and themij (and mji) elements of the fitness
matrix are increased: in this method, there is no need of any
supplementary conflict detection.

For each aircraft, the graph exploration visitsO(Tw
2)

nodes. Each node development needsO(N) elemen-
tary conflict detections (O(δTw) operations for each of
them). Thus, the fitness matrix computation is achieved in
O(δN2Tw

3) operations.
However, this evaluation process cannot be accelerated,

as the trajectory of an aircraft depends on all the trajectories
of previously handled aircraft in the classification.

4.7 Sharing

In order to avoid a premature convergence of the algorithm
around local optima, a clusterised sharing process is imple-
mented as detailed in [YG93]. This sharing process applies
the general principles introduced by Goldberg and Richard-
son [GR87] but can be computed inO(n log(n)) operations
instead ofO(n2) for classical sharing (n is the population
size).

The distance between two chromosomesA,B is defined
as follows :

• For GA WAIT encoding:

D(A,B) =

∑N

i=1 |diA − diB | + |liA − liB |

2NTw

• For GA SORT encoding:

D(A,B) =

∑N

i=1 |piA − piB |

2N
+

∑N

i=1 |liA − liB |

2Tw

Where:

• diA = t1iA − t0iA (resp.diB) is the time spent hold-
ing position by aircraftai in chromosomeA (resp.
B).

• liA (resp.liB) is the time spent in lengthened trajec-
tory in chromosomeA (resp.B).

In this way, the distance increases with the difference of
penalization assigned to aircraft.
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Figure 8: Generated delay
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4.8 Ending criteria

The ending criteria for GAWAIT and GA SORT is defined
with two parametersNmax, Nopt:

• Nmax = 100 is the maximal number of generations.
If no available solution is found before, the GA will
be aborted.

• Nopt = 15 is the maximal number ofsolvedgenera-
tions with the same best fitness. When the fitness of
the best element of the population is greater then1

2
and is stationary duringNopt generations, the GA is
stopped.

5 Simulation results

Simulations are carried out with real flight plans of Roissy
Charles De Gaulle airport on a complete day: March22nd

2002, 1433 flights, 695 departures, 738 arrivals. The three
simulations (one for each resolution method) are run with
the following configuration:
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Figure 10: Mean number of generations

• Time discretisation:σ = 5 seconds

• Time window:Tw = 5 minutes

• Simulation steps:∆ = 2 minutes

• Max speed:Vmax = 10 m/s

• Speed uncertainty:δ = ±10%

The two GA methods are run with a 200 chromosomes
population size, a 60% crossover rate, a 15% mutation rate
and the stochastic reminder without replacement selection
principle, described in [Gol89].

Figure 8 gives the mean generated delay as a function
of the number of aircraft involved in the situation. It ap-
pears that the 1-to-n method always generates more delay
than the two others, and that GASORT is the most efficient
method: solving the situation after sorting aircraft does not
seem to be so penalizing, at the condition to get an adapted
classification.

Figure 9 gives the mean number of aircraft simultane-
ously moving for each time period. It appears that the
GA SORT method keeps a lower number of moving aircraft
during heavy time periods: good resolutions of ground traf-
fic situations allow to decrease delay, but also lead to better
situations with less moving aircraft.

In order to observe the GA efficiency, figure 10 gives the
mean number of generations required by the two GA meth-
ods as a function of the clusters’ size and figure 11 gives the
mean value of the best fitnesses of each resolution. It can be
noticed that the GASORT method never deals with clusters
bigger than 15 aircraft. It generally requires less generations
than the GAWAIT method and find a solution with a big-
ger fitness to the problem. This can be explained by the one
wait per aircraft limitation of the GAWAIT method, which
appears to be more penalizing than the classification restric-
tions needed by the GASORT method.
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6 Conclusions

The simulations carried out in this study show that ground
traffic delay at big airports is not only due to runway capac-
ity but is very sensitive to the way that aircraft are managed:
at Roissy Charles De Gaulle, one of the busiest European
airport, the generated delay was largely reduced in the sim-
ulations using genetic algorithms.

Even if it is not yet possible to compare the solutions
coming from the simulations to the reality (taxiing speed
and followed paths can be very different and ground con-
trollers actions are not even recorded), these results are
promising : it seams profitable to develop some traffic man-
agement tools that could assist ground controllers and pro-
vide them some optimized solutions.

Moreover, it can be noticed that the whole airport model
was easily upgraded with some new and more detailed data
(push-back procedures, undesirable directions, new run-
ways, aircraft wake turbulence categories, speed uncertain-
ties, etc) without changing the algorithm itself. Thus, this
kind of simulations can also be useful to evaluate benefits
of new airport structures or new traffic procedures.

Further work will concentrate in refining the modelling
and the global criteria to optimize, taking into account for
example takeoff sequencing needs of approach sectors or
priority levels for slotted departures.
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