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Abstract
This paper presents an original method to evaluate

air traffic complexity metrics. In previous works, we
applied a Principal Component Analysis (PCA) to
find the correlations among a set of 27 complexity
indicators found in the literature. Neural networks
were then used to find a relationship between the
components and the actual airspace sector config-
urations. Assuming that the decisions to group or
split sectors are somewhat related to the controllers
workload, this method allowed us to identify which
components were significantly related to the actual
workload. We now focus on the subset of complex-
ity indicators issued from these components, and
use neural networks to find a simple relationship
between these indicators and the sector status.

Introduction
How complex is it to control a given air traffic

situation? Over the last years, this question has
become more and more crucial, as air traffic in-
creased, thus creating bottlenecks in the air traffic
control system. There arised a need for performance
and complexity metrics, allowing to assess how the
current system is operated and how it could be
improved.

As a consequence,air traffic complexityhas be-
come the subject of many studies – often in relation
to the controller’s workload – and a multitude of
complexity metrics have been proposed. The inad-
equacy of theaircraft count to appropriately reflect
the traffic complexity has now been acknowledged
for a long-time, and complementary indicators such
as "traffic mix", "number of potential conflicts" and
others, have been (and still are) designed. A linear
combination of these variables, often referred to
as dynamic density, is likely to better fit traffic
complexity than individual indicators. It is used
throughout most studies, where the correllation of
a set of indicators with a quantifiable variable

(subjective ratings, number of interactions with the
computer,...) assumed to represent the actual traffic
complexity, is maximized.

A possible shortcoming of this methodology is
that potentially non-linear relations between indica-
tors are missed (see [1] and the concern of Euro-
control when writing calls for proposals). But, more
importantly, the choice of the dependent variable is
crucial to determine how well complexity is actually
measured. Indeed, physical activity, as used in [2]
and [3], miss the important cognitive part of the
controller activity. On the other hand, physiological
indicators ([4], [5]) seem difficult to exploit and
how well they relate to traffic complexity is unclear.
Finally, widely used subjective ratings ([6], [7])
provide high quality data (as they obviously relate
to the kind of complexity investigated), but are
often seen as subject to biases (such as the recency
effect denounced in [5], and the possibility of raters
errors in the case of "over-the shoulder workload
ratings" [8]). In all of these cases, data are very
expensive to collect, as they require the active par-
ticipation of controllers. Databases are often small
and might exhibit low variability, which may in
turn harm the statistical relevance of the results.
This phenomenom is acknowledged in [7], where
the overfitting of data is clearly a consequence of a
lack of observations rather than a misspecification
of the neural network. Finally, as these complexity
metrics may be used to design computer-assisted
control tools or traffic management tools, and to
help organizing airspace, it is surprising to notice
that the question of the relevance of the complexity
measured to the final goal is scarcely discussed. The
question really is to understand which complexity is
measured and how well it relates to the foreseen ap-
plication (benchmarking, improvements in airspace
organization, design of new tools...).

Our research is initially motivated by former
studies on optimal airspace sector configurations
([9], [10]) and intends to improve the criterion used



therein to evaluate sector configurations. The basic
idea, introduced in [11], is that the decisions to
split a sector, mostly taken when the controller is
close to overload, are linked to traffic complexity
and may therefore provide an acceptable dependent
variable. Interestingly enough, collecting data on
sector configurations does not require controllers ac-
tive participation, as current outcomes from control
centers can be used, while related flight informations
are available from recorded radar tracks. As such,
raw data needed in our study are noticeably cheap
to collect and might be produced in large quantities.
The price to pay is that these data are noisy, as
we may not be sure that a sector splitting (resp.
merging) decision is directly related to overload
(resp. underload). Other factors might distort data,
such as training of unexperienced controllers, mete-
orological hazards, military airspace use... However,
we will assume that the impact of these phenomena
on the accuracy of the results is limited, particularly
because of the kind of complexity we are looking at
here. Indeed, this work is conducted in the perspec-
tive of future pre-tactical applications (e.g. sector
planning) and thus does not ask for as much details
as studies of instantaneous workload would (on
the opposite, benchmarking of ATC centers would
require an even coarser granularity, as indicators
are averaged on wide temporal and geographical
horizons [12], [13]).

This paper is a continuation of [14], which started
with a principal component analysis on a set of
indicators found in the literature, and where we
proposed an original method allowing to select
which components were actually related to the
controller’s workload, considering the status of the
control sector. Neural networks were used to in-
vestigate the link between complexity indicators
and sector configurations, as non-linear interactions
were suspected.

For practical purposes, we would rather avoid
to compute all the indicators and then apply a
transformation matrix in order to find the relevant
components. So, our aim now is to predict the sector
status directly from a small subset of relevant com-
plexity indicators, issued from the previous selection
of principal components.

The paper is organized as follows. Section I
briefly describes the indicators used throughout the

study, while section II presents the raw data from
which the final database is built. Section III summa-
rizes the results of the Principal Component Anal-
ysis (PCA) which was performed in [14]. Neural
networks are introduced in section IV. The results
on the complexity metrics selection and evaluation
are presented and discussed in sectionV. Section VI
concludes.

I. Air traffic complexity indicators

Indicator Definition Used in

Nb Number of aircraft [17] [7] [18] [6]
Nb2 Squared number of aircraft [18] [6]
σ2

gs Variance of ground speed [7] [6]
Nds Number of descending aircraft [2] [17] [7] [6]
Ncl Number of climbing aircraft [6] [2] [17] [7]
σgs

gs
Ratio of standard deviation [7] [6]
of speed to average speed

F5 Incoming flow (hozizon 5mn) [11]
F15 Incoming flow (hozizon 15mn) [11]
F30 Incoming flow (hozizon 30mn) [11]
F60 Incoming flow (hozizon 60mn) [11]

vprox_1 Vertical proximity C6 of [7] [7] [18] [6]
vprox_2 Vertical proximity C8 of [7] [7] [18] [6]
hprox_1 Horizontal proximityC9 of [7] [7] [18] [6]

Dens [19]
track_disorder [19]
speed_disorder [19]

Div [19]
Conv See appendix A [19]

sensi_d [19]
insen_d [19]
sensi_c [19]
insen_c [19]

inter_vert [13]
avg_vs See appendix A [13]

inter_hori [13]
creed_ok See appendix A [20], [21]
creed_pb [20], [21]

TABLE I

CHOSEN SUBSET OF AIR TRAFFIC COMPLEXITY INDICATORS

The accuracy of the results of a study related
to air traffic complexity is strongly dependent of
the diversity and quality of the chosen individual
complexity indicators. Many have been suggested
to help describe the controllers workload, and it
is hardly possible to implement the entire pool.
In order to limit the number of variables to be
(re)programmed and present indicators that are rep-
resentative of thedynamic densityliterature, we
focused on the ones selected by Kopardekar [6]



in its unified complexity metric1. These indicators,
and references to studies where they were used
and where definitions may be found, are presented
in Table I. We also implemented several indica-
tors inspired by studies conducted elsewhere in the
SDER (former CENA). Definitions are indicated
in appendix A2. Finally, we also used incoming
flows as explanatory variables, as they may be a
significant factor in the decision to split (or merge)
a sector.

II. Input data

The indicators are computed every round minute
of the day, using recorded radar data, environnement
data (sector description), and recorded sector config-
urations of the five french ATC centers. The sector
configurations are recorded every round minute of
the day, which explains our choice concerning the
frequency at which we compute the indicators.

Radar data is available in several forms: records
made by each center, with one position every twelve
seconds, in average, and a global record of the
five centers, with one position every three minutes.
Several months of global records were available,
whereas the centers local records were not readily
available, at least for a sufficiently long period of
time. So we used the global records (made by
the IMAGE system), and interpolated the aircraft
positions in order to get one position per minute.
As many trajectory changes may occur within three
minutes of flight, the computed positions are not
highly accurate, and this may introduce a bias in
the indicators values. However, this bias is most
probably of small importance in our problem: we
just want to predict when a sector will be merged
into another one, or split in several smaller sectors.
We are not considering the instant workload, which
may require a very high level of accuracy on the
aircraft position, speed, and so on. To be sure that
this bias is small, we should compare the computed
positions, and maybe also the indicators values,

1Though we were not always able to find an explicit formula,
and thus missed seamingly important indicators like, e.g.,
"MET_airspace structure". Note that this difficulty to get clear
definitions is also reported by Eurocontrol in [15].

2Further informations and discussions about indicators are to
be found in the internal note [16].

using local centers records, and global records, on
small data samples. This is left for future work.

Several months of recorded traffic are available.
However, considering the volume of data, it would
be tedious to run several experimentations on very
large data samples. So, we have restricted our
choice, at least for the moment, to one day of
traffic (1st june, 2003). Once we have found the
most significative complexity indicators, it will be
possible to re-train the neural network on larger data
samples.

On the chosen day,103 different sectors were
armed. The term "sector" means here either an
elementary sector, or a set of elementary sectors
merged together, and handled on a single con-
troller’s working position. The air traffic complexity
indicators were computed for each of these sectors,
every minute of the day, together with the sector
status (merged, armed, or split). This data was split
into two sets : about sixty percent was randomly
selected in order totrain the neural network, and the
rest was used totest the trained network on fresh
data.

This single day of traffic already provides a big
volume of data, as detailed in table II, with a great
diversity of geographic sectors, and with enough
data in each class of sector status.

Total Merged Armed Split
Train 71270 46.6% 27.0% 26.4%
Test 47513 46.4% 27.0% 26.6%

TABLE II

NUMBER OF MEASURES AVAILABLE, ON THE 1ST JUNE OF

2003.

III. Principal component analysis
Before applying the neural network to complexity

indicators and sector statuses, let us first give a
brief summary of theprincipal component analysis
results. The reader may refer to [14] for the details.

The aim of the principal component analysis
is to find the colinearities between the indicators,
and thus reduce the dimensionality of our prob-
lem. From the initial 27 complexity indicators, 6
main components were identified (corresponding to
eigenvalues greater than 1), that covered more than
76 % of the variance of the data set.



These components are interpreted as follows:C1

may be seen as a "size factor" and is strongly
representative of theaircraft count, C2 is related to
theground speed variance, and theaircraft vertical
evolutions, C3 is highly correlated withincoming
flows, C4 seems mostly related toconverging flows
and anticipation of conflicts, C5 is linked with
divergent flows, andC6 is strongly correlated with
the vertical proximity measures ([7]), and could
stand for themonitoring of vertical separation(near
the minimas).

Notice that we extracted only 6 components, thus
significatively less than the 12 components (briefly)
described in [6]. This might be explained by the
lack, at the point of the project, of indicators related
to the sector geometry.

Component Variables
C2 avg_vs, σgs

gs
, σ2

gs, Ncl, Nds

C3 F5, F15, F30, F60

C4 inter_hori, insen_c, Conv, creed_ok, creed_pb
C5 insen_d, Div
C6 vprox_1, vprox_2

TABLE III

VARIABLES BELONGING TO THE PRINCIPAL COMPONENTS

Table III lists the indicators providing the best
explanation for each component betweenC2 and
C6. For C1, we will simply use the number of
aircraft Nb, as it is the most representative of
the overall size of the problem. ForC2 and C3,
the selected variables have an absolute value of
correlation above0.4 (that is the correlation with
the component axis). For these two components,
the chosen variables are highly representative of the
corresponding components. The choice is less easy
for componentC4, where several indicators with
the highest correlation values are, in fact, not very
meaningful, as they are already involved in previous
components. This means that we probably should
refine again the definition of some of the indicators,
in order to have a clearer interpretation of this
component. For the time being, we have selected
the variables with the highest absolute values of
correlation, and which did not appear in previous
components. ForC5 andC6, the selected variables
are well correlated with the component (0.4 to 0.7).

IV. Neural networks

A. Presentation

Artificial neural networks are algorithms inspired
from the biological neurons and synaptic links. An
artificial neural network is a graph, with vertices
(neurons, or units) and edges (connections) between
vertices. There are many types of such networks,
associated to a wide range of applications: pattern
recognition (see [22] and [23]), control theory,...

Beyond the similarities with the biological model,
an artificial neural network may be viewed as a
statistical processor, making probabilistic assump-
tions about data ([24]). Sometrain data is used to
determine a statistical model of the process which
produced this data. Once correctly trained, the neu-
ral network uses this model to make predictions on
new data.
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Figure 1. Example of a feed-forward network with one hidden
layer

Neural networks are closely related to the
Bayesian probabilities. They may be used for un-
supervised learning (density estimationproblems),
and, mainly, supervised learning problems (regres-
sion, classification). Density estimation is not in the
scope of our paper, so we will not detail it. The aim
of regressionis to find a statistical model producing
anoutputy from input variables(let us denote them
by x), so that the outputy is as close as possible to
a target variable, which we shall denote byt. In the
case ofclassificationproblems, the target variables
represent class labels, and the aim is to assign each
input vectorx to a class.

We will use a specific class of neural networks,
referred to as feed-forward networks, or multi-
layer perceptrons (when the activation function is
logistic). In such networks, the units (neurons) are
arranged in fully-connected layers: aninput layer,



one or severalhidden layers, and anoutput layer.
Figure 1 shows an example of such a network.

For our problem, we have chosen three-layers
feed-forward networks, denotedIαHβOγ in the rest
of the paper, withα units in the input layer,β units
in the hidden layer, andγ units in the output layer.
The input variables are normalized, by substracting
the mean value and dividing by the standard devia-
tion.

The output vectory = (y1, ..., yk, ..., yq)
T is

expressed as a function of the input vectorx =
(x1, ..., xi, ..., xp)

T as follows:

yk = Ψ(

q
∑

j=1

wjkΦ(

p
∑

i=1

wijxi + w0j) + w0k) (1)

where thewij and wjk are weights assigned to
the connections between the input layer and the
hidden layer, and between the hidden layer and the
output layer, respectively, and wherew0j andw0k

are biases (or threshold values in the activation of a
unit). Φ is the sigmoid logistic function :

Φ(z) =
1

1 + e−z
(2)

For the transfer functionΨ applied to the output
layer, we have chosen thesoftmaxfunction:

Ψ(zk) =
ezk

∑C
m=1 ezm

(3)

With this choice for Ψ, the error function
minimized during training is the following log-
likelihood, known ascross entropy:

E(w) = −
N

∑

n=1

C
∑

k=1

t
(n)
k ln(y

(n)
k ) (4)

wheret(n) and y(n) are thenth target and output
vectors, respectively.

The error is a function of the network’s param-
etersw (weights and biases). Thetraining aims at
choosing these parameters, so as to minimize the
chosen output error function. As we adress a classi-
fication problem – assign each input vector (a list of
complexity indicators values) to a class representing
the sector status (merged, armed, or split) – it is
best to minimize the cross-entropy instead of the
quadratic error often used in regression.

The neural network is designed with one output
unit per class (merged, armed, or split). A target
vector t(n) with value (1, 0, 0) means that the con-
sidered sector was merged with other sectors when
thenth measure of the vector of complexity indica-
tors was made. Armed sectors will be represented by
(0, 1, 0). A value of (0, 0, 1) means that the sector
was previously split in two or more sectors at the
time x was measured. Of course, the actual output
y(n) of the neural network will not be made of exact
values0 or 1. It will be a triple (a, b, c) of floating-
point values between0 and1, each value being the
probability to belong to the corresponding class. The
input vectorx(n) will be assigned to the class of
highest probability.

The number of input units of the network is
the cardinal of the evaluated set of metrics. For
example, if we consider{V,Nb} we will use a
network with two input units. The hidden layer
comprises 15 units.

The nnet package of theR language was used
(see http://www.r-project.org/ for de-
tails on theR language and environnment). In this
package, developped by Pr B. D. Ripley, a quasi-
newton minimization method (BFGS) is used for the
network’s learning. We have taken the samennet

parameters as in [14].

B. Evaluation of the neural network’s outputs

A well-known problem, when using neural net-
works (or other regression methods), isoverfitting:
with enough parameters and enough training cycles,
it is always possible to find a good fit for a given
data set. So one may find a perfect fit for a chosen
data sample, and then feel disappointed when the
trained network makes wrong predictions on fresh
data. So, we will systematically proceed as follows:
train the network on a randomly chosen data sample
(called train), then check the results, first on the
same data sample, and second on a fresh data sam-
ple (calledtest) that was not used for the training.

In order to evaluate the outputs of several differ-
ent models, we have to compare the neural networks
predictions to the actual target values. We may
use the fit criterion (cross entropy) but it does not
reflect the influence of the number of weights (and
biases) in the neural network. It is known (see [24])
that a network with too few weights may not be



able to capture all the variations of the response
to the inputx, whereas a network with too many
weights will more likely be subject tooverfitting. In
the next sections, we will compare several sets of
input variables, of various sizes. Consequently,the
number of weights in the network will not remain
constant, and this variation will bias the results.

In [14], we used theAkaike information criterion
([25]) to select the best model:AIC = 2λ−2ln(L),
whereλ is the number of unadjusted parameters of
the model (i.e. the number of weights and biases
of the network), andln(L) is the log-likelihood.
However, fully connected neural networks are very
greedy, as concerns the number of parameters: the
number of weights and biases highly increases when
adding new input variables. So we will rather use the
Schwartz Bayesian information criterion (BIC =
2λ.ln(N)−2ln(L)), which assigns a higher penalty
to the number of parameters in the model.

In our case, the BIC is written as follows, where
N is the size of the data sample:

BIC = 2λ.ln(N) − 2

N
∑

n=1

C
∑

k=1

t
(n)
k .ln(y

(n)
k ) (5)

In our previous work, we were able to compare
predictions made on thetrain test and on thetest
set, which are of different size, by dividing the AIC
by N , the number of data items:AICavg = AIC

N
. In

this paper, we will useBICavg = BIC
N

. However,
we must be aware that the correcting factorln(N)
is different for both data sets, so it is meaningless
to comparetrain and test data with this criterion.
This is not of much importance, as we have already
observed that the results on both data sets were
highly consistent. In fact, we will make our model
selection with the BIC criterion computed with the
network’s outputs predicted ontestdata only.

In addition to the numerical results provided by
the Bayesian information criterion, we shall also
consider the global proportion of correctly classified
input vectors, and also the percentage of correct
classifications for each class. One must be aware,
however, that the rate of correct classificationsis
not the criterion being maximized by the neural
network, so we should remain cautious when com-
paring the different classification rates. However,
these percentages are easily understandable and may

allow us to make some interesting statements on the
results.

V. Results
A. Components selection

Input variables

B
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Figure 2. Values of theBICavg criterion for the different sets
of components

Figure 2 shows, fortrain andtestdata, the evolu-
tion of the averaged Schartz Bayesian Information
Criterion for several combinations of components.
The mean values, averaged on five runs, are pre-
sented. This BIC curve confirms the similar results
found in [14] with the AIC.

The best trade-off between the model complexity
(number of parameters in the neural network) and
the benefit provided by the additional components
is obtained with the{V ;C1; ...;C4} model, that
is: the sector volume, the "overal size" factor (air-
craft count), the ground speed variance and vertical
evolutions, the incoming flows, and the flow con-
vergence and conflicts anticipation. ComponentC5

(flow divergence) is either irrelevant, or redundant
with C4 (flow convergenceand conflicts anticipa-
tion). ComponentC6 (monitoring of aircraft vertical
separation) is most probably irrelevant: in normal
traffic situations, we may expect that all aircraft in
close vertical proximity have previously been later-
ally separated by the controller. The same remark
applies for horizontal proximity. This was already
stated in [7]. So the aircraft in close proximity are
not a significant factor in the decision to split or
merge a sector. Theanticipationof future conflicts
may be more relevant.



This selection of the best model is very useful
for a qualitative evaluation of the metrics. However,
for practical purposes, it is not very convenient
to compute the27 complexity indicators, and then
apply a transformation matrix to get the compo-
nents. It would be useful to predict the sector status
directly from a smaller subset of relevant complexity
indicators.

B. Metrics selection

Let us now select the relevant metrics from the
components of the best model{V ;C1; ...;C4}. The
initial variables subsets – the variables most cor-
related to each component axis – are detailed in
table III of the PCA. We must be aware that the
relative weight of a variable within a component
(the linear correlation with the component axis) is
not necessarily related to its relative influence on
the quality of the neural network’s prediction, as
the relationship between the sector status and the
explanatory variables may be non-linear. So we will
again select the variables according to the Bayesian
information criterion.

An iterative process is used to select the relevant
variables. Each component is considered in turn. We
have chosenNb, the number of aircraft, to represent
componentC1, the overal size of the problem.

Starting with a basic set of variables{V,Nb}, we
build the best sequence ofC2 variables, by choosing
at each step the variable which minimizes the BIC
criterion. To do so, we consider eachC2 variable
in turn (together withV and Nb), select the best
one, add it to the sequence, and then consider the
remaining variables, and so on until all variables
have been tested.

The BIC curve is then drawn for this sequence,
and the subset of variables corresponding to the
minimum of this curve is added to the set of relevant
variables. The process is then repeated with the next
component, starting with the new set of relevant
variables, and so on until all components have been
considered.

The neural networks are trained on thetrain data,
and the BIC is computed ontestdata. Five runs are
made for each subset of variables. We will take the
minimum value among these five runs, and use it in
the selection process.

In the previous experiments ([14]) on components
selection, the mean values and the minimum values
lead to the same results. In the metrics selection,
we have stated small differences between the two,
probably due to the fact that some metrics belonging
to a same component give fairly close results, like
avg_vs, σgs

gs
, andσ2

gs in componentC2, for example.
As the neural network with the best fit is closer to
the "true" model than when considering the aver-
aged value, we will now use the minimum value.
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Figure 3. Evolution of theBICavg criterion for component
C2, for the sequenceavg_vs, σgs

gs
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Figure 3 shows the evolution of the BICavg
criterion when adding successively the variables of
componentC2 to the basic set{V,Nb}, in the order
of the best sequence found by the BIC minimiza-
tion process:avg_vs, σgs

gs
, σ2

gs, Ncl, Ndes. Thex axis
labels on this figure are detailed in table IV.

Subset Indicators
C2_a V , Nb, avg_vs
C2_b V , Nb, avg_vs, σgs

gs

C2_c V , Nb, avg_vs, σgs

gs
, σ2

gs

C2_d V , Nb, avg_vs, σgs

gs
, σ2

gs , Ncl

C2_e V , Nb, avg_vs, σgs

gs
, σ2

gs , Ncl, Nds

TABLE IV

SUBSETS OF THE SEQUENCE SHOWN ON FIGURE3 (COMP.

C2)

The curve’s minimum is reached with the com-
bination {V,Nb, avg_vs}. This does not mean that
the otherC2 variables are irrelevant: the results with
{V,Nb, σ2

gs}, and{V,Nb,
σgs

gs
} were fairly close to

the best result. So the ground speed variance and
the ratio of standard deviation of speed to average
speed are simply redundant with the average vertical
speedavg_vs. This is also true for the numbers



of climbing and descending aircraft, although they
proved slightly less performant.

These results, showing the relevance of ground
speed variance and altitude changes, are in con-
tradiction with previous results presented in [26].
In this study, Masalonis, Callaham, and Wanke
applied a logistic regression to subjective ratings
and dynamic densitymetrics. The contribution of
each metric was then assessed, for each ARTCC, by
dropping the metric from the model. In particular,
they found that the speed and altitude changes
could be dropped without significantly affecting the
model’s predictions.

Our results contradict these statements, as we find
that the component representing the speed variance
and the altitude changes actually improves the BIC
criterion. We have no ready explanation for this.
It may be that, in [26], the sector volume alone
captures the fact that some sectors are dedicated
to a specific type of traffic: pre-approach sectors
with evolutive aircraft are generally smaller than
pure en-route sectors. As we use sectors or groups
of sectors of various sizes and statuses (merged,
armed, or split), there is no correlation between the
sector volume and the nature of the traffic within
the sector. So the speed variance and the altitude
changes become relevant in that context. But, as we
don’t know the particulars of [26], it is difficult to
be sure.

Let us now consider the variables of component
C3, applying the same procedure, and starting from
the new set of relevant variables{V,Nb, avg_vs}.
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Figure 4. Evolution of theBICavg criterion for component
C3

Figure 4 shows the evolution of theBICavg for
the best sequence found for componentC3 (see
table V). The minimum is reached for the subset
{V,Nb, avg_vs, F60, F15}.

Subset Indicators
C3_a V , Nb, avg_vs, F60

C3_b V , Nb, avg_vs, F60, F15

C3_c V , Nb, avg_vs, F60, F15, F5

C3_d V , Nb, avg_vs, F60, F15, F5, F30

TABLE V

SUBSETS OF THE SEQUENCE SHOWN ON FIGURE4 (COMP.

C3)

The incoming flow with a time horizon of 15
minutes belongs to the subset of relevant variables.
This is consistent with the fact that strips are sent to
the controller’s working position about 15 minutes
before the aircraft actually enters the sector.

We were rather surprised to see that the incoming
flow of traffic entering the sector in the next hour
also belongs to the set of relevant variables. This
incoming flow is probably less linked to the varia-
tions of the number of aircraft, and it may somehow
smooth these variations.

The incoming flow within the next 5 minutes does
not provide any improvement. The first step of the
BIC minimization process showed that the BICavg
criterion increased when addingF5 to the subset
{V,Nb, avg_vs}, whereas all other flows improved
the criterion. So it is either highly redundant with
the previous variables, or irrelevant.

Metrics subset
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Figure 5. Evolution of theBICavg criterion for component
C4

Figure 5 and table VI show the results for com-
ponent C4. The minimum for this component is
reached when addinginter_hori. The additionnal
variables of the rest of the best sequence increase
the BIC criterion. However, the other variables also
performed quite well, when put in first position
in the sequence. This means that they are not
irrelevant, but redundant withinter_hori.



Subset Indicators
C4a V , Nb, avg_vs, F60, F15, inter_hori
C4b V , Nb, avg_vs, F60, F15, inter_hori, creed_pb
C4c V , Nb, avg_vs, F60, F15, inter_hori, creed_pb,

creed_ok
C4d V , Nb, avg_vs, F60, F15, inter_hori, creed_pb,

creed_ok, Conv
C4e V , Nb, avg_vs, F60, F15, inter_hori, creed_pb,

creed_ok, Conv, insen_c

TABLE VI

SUBSETS OF THE SEQUENCE SHOWN ON FIGURE5 (COMP.

C4)

An interesting result is that the metrics related to
the anticipation of conflicts, for converging aircraft
in the horizontal plane, do not bring any supplemen-
tary benefit, when added tointer_hori, the number
of potential crossings with angle greater than 20
degrees. Notice that all these metrics –anticipation
of conflictsandflow convergence– were already put
together in a same component by the PCA. This
leads to think that the main feature captured by this
set of metrics is the fact that the pairs of aircraft
within the sector are in a converging configuration,
or not.

We have a feeling that otherconflict detection
indicators (not only for converging flights, and not
only in the horizontal plane) may be useful, and
may be more orthogonal to the indicators we have
implemented so far. This may be the subject of
future work.

To conclude on the metrics selection, we end up
with a subset of only 6 most relevant indicators
{V,Nb, avg_vs, F60, F15, inter_hori} among the 27
metrics, plus the sector volume, that were consid-
ered in this study. This allows to establish a direct
relationship (equation IV-A, with the weights and
biases of the trained network) between these six
indicators and the probability to belong to a sector
status class.

C. Classification rates

Table VII shows the correct classification rates
obtained, ontrain and test data, with the subset of
most relevant indicators. The results withtest data
are rather consistent with the ones obtained with
train data, as was already the case when studying
the components ([14]).

Set Global Merged Armed Split
Train 83.47% 89.07% 65.58% 91.91%
Test 83.24% 89.14% 64.56% 91.75%

TABLE VII

CORRECT CLASSIFICATION RATES FOR THE

{V, Nb, avg_vs, F60, F15, inter_hori} MODEL, WITH A

I6H15O3 NETWORK

VI. Conclusion

In conclusion, the proposed method, using neural
networks and sector status records, allows selecting
the most relevant air traffic complexity metrics,
among several indicators proposed in the literature.

In a previous work ([14]), a principal component
analysis reduced the scope of the study to 6 main
components , starting from 27 metrics to which we
added the sector volume. It was then found, by ap-
plying neural networks to the principal components
and to the sector statuses, that only the first four
were significantly related to the decisions to split or
merge sectors.

In the current paper, we focused on the subset of
metrics belonging to the four relevant components.
Still using neural networks and sector statuses,
we proposed a selection process, minimizing the
Bayesian information criterion, which allowed to
select a small subset of 6 relevant metrics: the sector
volumeV , the number of aircraft within the sector
Nb, the average vertical speedavg_vs, the incoming
flows with time horizons of 15 minutes and 60
minutes (F15, F60), and the number of potential
crossings with an angle greater than 20 degrees
(inter_hori). Let us note that the other metrics may
be either irrelevant, or simply redundant with the
most relevant indicators.

We established a fairly simple equation (equation
IV-A with the weights of the trained network),
allowing to predict the sector status (merged, armed,
or split) from these relevant metrics. The rates of
correct predictions were above83% (global rate),
and highly consistent when consideringtrain and
testdata.

The neural network approach used in this study
seems appropriate for the granularity we are in-
terested in and the foreseen applications, either
strategical (sector design) or pre-tactical (sector



planning). We are also fairly confident that decisions
to split or merge sectors may allow to assess the
instantaneous workload as well, and could therefore
be used to improve tactical tools (PRESAGE). To
this end, other statistical methods should be inves-
tigated to take into account the serial correlation of
sector status, looking closely at the sector splitting
times. We plan to tackle this issue in a close future,
using dynamic discrete choice models.

Finally, another issue that we intend to address,
in relation to the complexity indicators, is the pre-
diction of optimal sector configurations. Previous
works ([9], [10]) proposed several algorithms to
compute optimal sector configurations, using sector
capacities andincoming flows. The output of the
neural network is a triple of probabilities, allowing
to decide when a sector should be split, or merged.
We may derive a realistic workload indicator – and
also threshold values – from these probabilities,
which could be used to compute optimal sector
configurations.
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APPENDIX A: Complexity metrics
Delahaye and Puechmorel metrics

To present the geometrical indicators introduced in
[19], we need to define several quantities:

• The vector representing the distance between two
aircraft is denoted by

−−−→
XiXj whereXi (resp.Xj)

stands for the location of aircrafti (resp.j).
• The "oblical" distance between two aircraft (i and

j) is denoted by

dob
ij =

√

<
−−−→
XiXj ,

−−−→
XiXj > , (6)

where < ., . > stands for the appropriate scalar
product.

• We denote by−→v ij = −→v j −−→v i the speed difference
between two aircraft.

• The derivative of the "oblical" distance between two
aircraft is denoted byvij and writes

vij =
<

−−−→
XiXj ,

−→v ij >

dob
ij

. (7)

• We introduce a weighting functionf . As suggested
in [27], we used

f(dob
ij ) =

e−α(dob
ij )2 + e−βdob

ij

2
, (8)

with α = 0.002, β = 0.01, thedob being expressed
in nautical miles.

These indicators are defined pointwise. To get a value on
the controlled airspace, they have to be averaged on the
different aircraft. In [19], a density indicator is defined
as follows

Dens(i) =

N
∑

j=1

bf(dob
ij ) . (9)

Two indicators are introduced to reflect the variability
in headings (track_disorder) and speed (speed_disorder).
There are defined as

track_disorder(i) =
∑

j �=i

|θi − θj |f(dob
ij ) . (10)

speed_disorder(i) =
∑

j �=i

‖−→v ij‖f(dob
ij ) . (11)

IndicatorsDiv et Convrespectively describe convergency
and divergency of the aircraft in the controlled sector.

Div(i) =

Nb
∑

j = 1
j �= i

1R− (vij) . |vij | f(dob
ij ) , (12)

Conv(i) =

Nb
∑

j = 1
j �= i

1R+ (vij) . |vij | f(dob
ij ) . (13)

IndicatorsSd+ and Sd− are designed to set a weight
on potential conflicts that are difficult to solve. These
"sensitivity" indicators are defined by

Sd−(i) =

Nb
∑

j = 1
j �= i

1R− (vij) ‖
−→
∇vij‖f(dij) , (14)

Sd+(i) =

Nb
∑

j = 1
j �= i

1R+ (vij) ‖
−→
∇vij‖f(dij) . (15)

Note that components of the gradient are weighted so as
to reflect the difficulty of the respective manoeuvers3. As
observed in [19], a situation with a high "sensitivity" is
easier to resolve for the air controller than one with a
low "sensitivity". As these indicators "increase" with the
number of aircraft, it is unclear whether they actually are
"complexity" or "simplicity" indicators. We thus define a
last pair of indicators,insen_cand insen_das

insen_c=
Conv2

Sd+
and insen_d=

Div2

Sd−
. (16)

Modified PRU metrics
The work conducted by SDER-RFM for the Perfor-

mance Research Unit (citeRFM), though initially de-
signed to compare ATC centers on a daily basis, inspired
the following indicators :

• inter_hori: number of potential crossings (irrespec-
tive of the aircraft direction on their trajectories)
with angle greater than 20 degrees.

• inter_vert: denote byn1, n2 et n3 the numbers of
stable/climbing/descending aircraft. The indicator is
then defined as

inter_vert =
(n1n2 + n2n3 + n1n3)

(n1 + n2 + n3)
. (17)

• avg_vs: this is simply the average vertical speed of
controlled aircraft.

3Reasonable weights were given by P. Averty and M.
Tognoni.



Metrics inspired from the CREED project
The work of P. Averty on conflict detection [20]

inspired a set of indicators. One of the ideas in [20] is that
conflict perception is "plannar". The author thus defines
for converging pairs of aircraft the following quantities

• Ed : minimum horizontal distance between aircraft.
• Efl : horizontal distance when the aircraft are verti-

cally separated (after the crossing).
• Da : the "anticipation degree", i.e. the distance

between the faster aircraft and the intersection of
the aircraft trajectories (in the horizontal plan).
We replace this variable to a modifiedDa, DaC,
which stands for the greater distance between one
of the aircraft and the point where, horizontally,
the distance between aircraft is the smallest. For
explanations about this substitution, we refer to
[16].

Originally, these quantities are defined to describe
conflict perception. To translate the idea of [20] in terms
of traffic complexity, we assume that a conflict is all the
more critic that the expected separation (Ed andEfl) and
the anticipation (DaC) are small. We thus set

creed =
1

α Da + (1 − α)(β Ed+ (1 − β) Efl)
, (18)

whereα andβ are parameters in[0; 1]4. Finally, aircraft
pairs considered in [20] are such that vertical separation
occurs prior to separation, as the converse situation is
avoided as much as possible by controllers. Accordingly,
the complexity associated with these latter pairs is likely
to be greater and we distinguished the two kind of
conflicts by summing the quantity fintroduced in (18) on
both sets of aircraft, thus creating two distinct indicators,
creed_ok("good pairs") andcreed_pb("bad pairs").
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4As for now, these parameters are set equal to 0.5, but are
meant to be adjusted and possibly vary withDaC to reflect the
results of ongoing research [21].


