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Abstract

This paper describes a novel approach for defining an
air traffic complexity indicator, aimed at improving over
the current operational definition that is only the num-
ber of aircraft present in a sector at a given time. The
key concept in this work is that a level of disorder or
equivalently unpredictibility is the right indicator. Our
approach is relevant for many applications in the air
traffic management area, like sector design ([2]), traf-
fic assignment ([1, 3]) and will be very well suited for
predicting complex situations in a future autonomous
aircraft environment. Moreover, since this modelling
takes explicitely into account the trajectories of the air-
craft, either observed or planned, it fits perfectly with
4D based ATM like SESAR or NextGen.

1. Introduction to complexity

The ATM system has to cope with an increasing

number of flights, pushing the capacity to its limits. As

an example, the average daily traffic above Europe was

26286 flights/day, with a peak traffic demand in excess

of 31000 flights [4]. Although delays are kept low, it is

expected from the same reference that capacity has to be

extended in the furture. Basically, two strategies can be

devised : adapt the demand to capacity (slot-route allo-

cation, collaborative decision making, . . . ) or adapt the

capacity to the demand (Airspace design, 4D trajectory

planning, autonomous aircraft, . . . ). The first approach

can be used in the context of current ATM system, while

innovative future designs will mainly follow the second

strategy.

Currently, complexity of the traffic is measured

only as an operational capacity : the maximum num-

ber of aircraft that ATC controllers are willing to ac-

cept is fixed on a per-sector basis and complexity is as-

sessed by comparing the real number of aircraft with the

sector capacity. It must be noted that under some cir-

cumstances controllers will accept aircraft beyond the

capacity threshold while rejecting traffic at other times

although the number of aircraft is well below the maxi-

mum capacity. This simple fact clearly show that capac-

ity as a crude complexity metric is not enough by itself

to fully account for the controller’s workload. In order

to better quantify the complexity, geometric features of

the traffic have to be included.

1.1. Complexity vs workload

As previously stated, depending on the traffic struc-

ture, ATC controllers will perceive differently situa-

tions, even if the number of aircraft present in the sector

is the same. Furthermore, exogenous paramaters like

the workload history can be influential on the perceived

complexity at a given time (a long period of heavy load

will tend to reduce the efficiency of a controller). Some

reviews of complexity in ATC have been completed,

mainly from the controller’s workload point of view

[5, 11], and have recognized that complexity is related

to both the structure of the traffic and the geometry of

the airspace. This tends to prove that controller’s work-

load has two facets :

• An intrinsic complexity related to traffic structure.

• A human factor aspect related to the controller it-

self.

While most complexity metrics tend to capture those ef-

fects within a single aggregate indicator, the purpose of

this work is to design a measure of intrinsic complexity

only since it is the most relevant metric for an highly

automated ATC system (no human factors).
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1.2. Dynamic density

The first complexity indicator incorporating struc-

tural considerations along with the simple number of

aircraft is the “Dynamic Density” of Laudeman et

al. from NASA [10]. The “Dynamic Density” is a

weighted sum of the traffic density (number of aircraft),

the number of heading changes (> 15 degrees), the num-

ber of speed changes (>0.02 Mach), the number of al-

titude changes (>750 ft), the number of aircraft with 3-

D Euclidean distance between 0-25 nautical miles, the

number of conflicts predicted in 25-40 nautical miles.

These factors are summed together using weighting fac-

tors that were determined by showing different traffic

scenarios to several controllers. B.Sridhar from NASA

[12], has developed a model to predict the evolution of

such a metric in the near future. Efforts to define “Dy-

namic Density” have identified the importance of a wide

range of potential complexity factors, including struc-

tural considerations. However, the instantaneous posi-

tion and speeds of the traffic itself does not appear to be

enough to describe the total complexity associated with

an airspace. A few previous studies have attempted to

include structural consideration in complexity metrics,

but have done so only to a restricted degree. For ex-

ample, the Wyndemere Corporation proposed a metric

that included a term based on the relationship between

aircraft headings and dominant geometric axis in a sec-

tor [8]. The importance of including structural consid-

eration has been explicitly identified in work at Euro-

control. In a study to identify complexity factors using

judgment analysis, Airspace Design was identified as

the second most important factor behind traffic volume

[9]. Histon, et, al. [6, 7] investigated how this structure

can be used to support structure-based abstractions that

controllers appear to use to simplify traffic situations.

2. Dynamical System Modeling

The main idea behind this new complexity indica-

tor is to consider that observed traffic is a sample of

an underlying flow. Within this framework, aircraft can

be thought as particles moving in a stream, the geom-

etry of the corresponding system being the most influ-

encial factor for complexity. While this modelling is

not directly related to a physical reality it can be noted

however that in an highly automated context, the ma-

noeuvres generated by an automatic conflict solver will

adhere to this principle quite accurately. The first step

for complexity computation is thus to find an interpolat-

ing vector field based on the past aircraft positions and

intents. Given a set of N observations :

(ti,xi,vi)N
i=1

with ti,xi,vi respectively the measurement time, the po-

sition and the velocity of the i-th aircraft, the interpola-

tion problem is to find a smooth enough vector field :

X : R×R
3 → R

3 such that :

∀i = 1 . . .N,X(ti,xi) = vi

Unfortunately, this problem is ill-posed since this re-

quirement will not uniquely define X . A classical way

to deal with this problem is to add an extra requirement

on X , namely that it realizes the minimum of a so-called

energy functional. Most of the time, this functional is

obtained as a spatial L2-norm of the form :∫
R3
‖LX(t,x)‖2dx

with L a differential operator. It has to be noted that

variable t is not taken into account, so that the solution

is expected to be a stationary vector field. A lot of works

have been devoted to this kind of problem that falls in

the category of interpolating vector splines ([14],[13]).

It is well known that the optimal X satisfying the inter-

polation condition is of the form :

X(t,x) =
N

∑
i=1

λ t
i G(x,xi)

Where G(x,y) is the Green’s function associated with

the differential operator LtL and λi is a 3-dimensional

vector coefficient. A convenient L for many applica-

tions in physics is the div-curl operator :

L = α∇div+β∇curl

with α,β positive real numbers tuning the respective

contributions of the div and the curl part : a high α
will yield to a nearly constant divergence while a high

β will enforce constant curl. It has to be noted that if

α = β , the criterion degenerates to a square laplacian

operator, which has the nice property of being diagonal,

so that the vector problem reduces to 3 one dimensional

problems. While this particular approach has been ex-

ploited in some of our past works, it is more relevant

for our application to allow time-varying interpolating

vector fields : in the following X : R×R
3 will be a time

dependent vector field with time as first coordinate. The

energy functional is chosen to be :

E(X) =
∫

R

∫
R3

∥∥∥∥∥∂X
∂ t

2
∥∥∥∥∥+

μ ‖∇(div+ curl)X‖2 dtdx

where μ > 0 tunes the relative part of time variation and

div-curl criterion. Intuitively, X will be the most station-

ary field with minimal div-curl variation. The differen-

tial operator associated with this variational problem is
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given by :

P =
∂ 2

∂ t2
−μΔ2

An elementary solution can be found in S ′ as :

pf
(

1√μ‖ξ‖2

)
exp(−|t|√μ|ξ |2)

where the previous expression is the fourier transform

in S ′, the space a rapidly decreasing smooth functions,

with respect to the spatial coordinates of the elementary

solution. It turns out that this distribution is indeed ob-

tained from a L1
loc (integrable on compact sets) mapping

so that the inverse Fourier transform can be obtained

readily by integration as :

p(t,x) =
1

8π3

∫
R3

1√μ‖ξ‖2

exp(−|t|√μ‖ξ‖2)exp(i〈x,ξ 〉)dξ

by Fubini’s theorem and polar change of variables it be-

comes :

p(t,x) =
1

8π3
√μ

∫
R

exp(−|t|√μr2)
∫

S 2
exp(i〈x,rs〉)dσ(s)dr

with dσ the solid angle measure. Using a polar

parametrization of the unit sphere :

p(t,x) =
1

8π3
√μ

∫
R

exp(−|t|√μr2)

∫ 2π

0

∫ π

0
exp(i‖x‖r cosθ)sinθdθdφdr

and finally :

p(t,x) =
1

2π2
√μ∫

R

exp(−|t|√μr2)
sin‖x‖r
‖x‖r dr

by Parseval equality :

p(t,x) =
1

4‖x‖π2

√
π

|t|√μ∫ ‖x‖
2π

−‖x‖2π

exp
(
− π2ω2

|t|√μ

)
dω

so in terms of error function erf :

p(t,x) =

1

4π2‖x‖erf

(
‖x‖

2
√|t|√μ

)

Like the heat kernel, the fundamental solution obtained

is singular for x = 0, t = 0. Before introducing a way of

obtaining computable kernels, it is interesting to look at

some properties of p(t,x) :

• Error function is rapidly converging to 1 when its

argument goes to +∞. In fact, er f (4) is equal to 1

at machine precision when computing with single

precision float numbers. It thus means that contri-

butions in the interpolating field coming from air-

craft far from the evaluation point are very close

to being proportional to a standard 1/‖x‖ potential

function.

• Unlike classical div− curl splines obtained from

the first non time-varying functional, these new

splines are decreasing at infinity, allowing to drop

contributions of far enough aircraft (strictly speak-

ing, this is the case even for the div-curl splines,

but decrease is due to cancellations between con-

tributions and is slower).

The main issue in using the kernel p is that the recon-

structed field :

X(t,x) =
N

∑
i=1

λi p(t− ti,x− xi)

is singular at observation points (ti,xi,vi). A simple way

of avoiding this is to change the interpolation criterion :

instead of enforcing that X(ti,xi) = vi, i = 1 . . .N, we im-

pose that the mean value of the field in a neighborood

of xi has to be equal to vi. In order to allow simple com-

putation of the interpolating splines in closed-form, it

has been chosen to compute the mean of X with respect

to a gaussian density, so that the interpolation condition

becomes :

1

(2πσ)3/2

∫
R3

e−
‖x−xi‖2

2σ2 X(t,x)dx

= vi

σ is the standard deviation for the gaussian density and

is a tuning parameter for the shape of the field. Solv-

ing the functional equation with this new interpolation

criterion yields a non singular kernel :

p(t,x) =

σ
‖x‖er f

(
‖x‖

σ
√

2+ |t|

)

Here again, it worth notice that the asymptotic be-

haviour of p is to revert to a classical 1/‖x‖ potential.
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3. Lyapunov exponents

The metric chosen for complexity computation re-

lies on a measure of sensitivity to initial conditions of

the underlying dynamical system called Lyapunov ex-

ponents. In order to figure out what Lyapunov expo-

nents are, let consider a point and look at its evolution

when transported by the dynamical system.

Let x be fixed (initial point) and let φ be a point tra-

jectory of the dynamical system associated to the vector

field X given by :

φ(t,x) = x+
∫ t

0
X(s,φ(s,x))ds (3.1)

Assume now that trajectory is disturbed by a small

perturbation ε , we have :

φ(t,x+ ε) = φ(t,x)+
Dxφ(t,x) · ε +o(‖ε‖)

where Dxφ(t,x) is the differential of the vector field at

x that satisfies :

Dxφ(t,x)
dt

=

DxX(φ(t,x)) ·Dxφ(t,x)
(3.2)

The Lyapunov exponents are closely related to the sin-

gular values of the matrix Dxφ(t,x) and can be thought

as local shear values for the dynamical system.

When Lyapunov exponents are high, the trajectory

of a point under the action of the dynamical system is

very sensitive to initial conditions (or to the parameters

on which the vector field may depend), so that situa-

tion in the future is unpredictable. On the other hand,

small values of the Lyapunov exponents mean that the

future is highly predictable (expected to be comfortable

for a controller). So, the Lyapunov exponent map deter-
mines the area where the underlying dynamical system
is organized. It identifies the places where the relative
distances between aircraft do not change with time (low
real value) and the ones where such distance change a
lot (hight real value).

Let us now describe the practical procedure for

computing complexity maps.

First of all, the optimal dynamic div-curl approxi-

mation for the observed trajectories is computed, based

on the defining equations. That step requires a linear

system solving.

The second step computes the second derivatives

matrix Dxφ at each point of the grid for φ trajectory

starting at x. This is done by solving the differential

equation 3.2 with a Runge-Kutta integrator. The com-

plexity value at point x is then obtained by averaging

Lyapunov exponents over the time (assuming sampling

times (t1, . . . , tn) :

κ(x) =
1

n

i=n

∑
i=1

‖DxX(φ(ti,x))‖2 (3.3)

The figure 1 shows an example of Lyapunov expo-

nents map for which full organized miles in trail trajec-

tories (from south west to north east) cross two random

traffic situations. This figure shows clearly a complexity

Figure 1. Miles in trail trafic between disor-
dered areas

valley on the miles in trail direction. This organization

may have been detected even if the miles in trail trajec-

tories would have been structured on a curve trajectory.

That is the strong point of this metric: Lyapunov expo-
nents are able to identify any kind of trajectory orga-
nization. The next figure is an example of a complexity

map computed on real traffic over France : Major air-

Figure 2. Complexity over France

ports are clearly visible as high complexity areas. It has

to be noted that on this picture, organized traffic is clas-

sified as low complexity as expected.
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4. Computational issues

Computing Lyapunov exponents amounts to inte-

grate a differential equation. Under standard smooth-

ness assumptions on X :

d
dt

Dxφ(t,x) = DxX(t,φ(t,x))Dxφ(t,x)

giving a linear cocyle equation. Putting

A(t,x) = Dxφ(t,x)

the cocyle equation is :

d
dt

A(t,x) = DxX(t,φ(t,x))A(t,x)

which is a linear differential equation in matrix func-

tion A(t,x). Nearly all standard algorithms can be used

for that purpose but one quickly realize that the prob-

lem is far from being well conditionned. In fact, most

of the time it is easy to obtain the flow φ(t,x) with good

accuracy but by construction A(t,x) tends to grow expo-

nentially fast in some directions (corresponding to pos-

itive Lyapunov exponents) and to decay exponentially

fast in others (corresponding to negative Lyapunov ex-

ponents) : the condition number is thus increasing again

exponentially. Then it will be extremely inaccurate to

compute Lyapunov exponent merely by integrating the

linear cocyle equation : one needs a kind of rescaling

to recover good numerical properties. There is a abun-

dant literature on the subject, however all methods fall

into one of two categories : spatial integration or tem-

poral integration. Direct application of the definition

gives the second approach while ergodic theorem gives

the first one. Both have advantages and drawbacks :

• Spatial integration is efficient and free from slow

convergence phenomenon occuring sometimes in

temporal integration. However, in order to use the

ergodic theorem, one must find an invariant mea-

sure. Most of the time, it has to be done by cover-

ing algorithms.

• Temporal integration can suffer from slow conver-

gence. Moreover, it requires periodic rescaling to

avoid numerical problems.

In our complexity application, only the temporal ap-

proach has been tested.

4.1. Algorithms based on differential geometry

All the machinery used in this part is borrowed

from a paper from T.J. Bridges and S.Reich. Basically,

the trick is to use the Perron lemma to compute the k

largest Lyapunov exponents : the matrix A(t,x) is fac-

tored as A(t,x) = Q(t)R(t) with Q(t) orthogonal and

R(t) upper triangular, both matrices beeing smooth in

t. The Lyapunov exponents are directely related to the

diagonal elements of R(t). The problem is then to up-

date continuously a QR factorisation (or a polar decom-

position which is very similar except that the right hand

side matrix is symetric instead of being upper triangu-

lar). The differentiel equation satisfied by Q can be es-

tablished first by noticing that the matrix :

M(t) = Qh(t)A(t)Q(t)−Qh(t)Q̇(t)

is upper triangular so adding its conjugate yields a sy-

metric matrix with the same coefficients except on the

diagonal where there are doubled. However :

Mh(t)+M(t) = Qh(t)(A(t)+Ah(t))Q(t)

since Qh(t)Q̇(t) + Q̇h(t)Q(t) = 0 (Q is unitary so the

derivative of Qh(t)Q(t) = Id vanishes). So M(t) can be

otained without Q̇(t). Now, simply use the relation :

Q̇(t) = A(t)Q(t)−Q(t)M(t)

This differential equation can be solved readily by stan-

dard runge-kutta integrator. Orthogonality of Q is nev-

ertheless hard to preserve, so that efficient implemen-

tations require specfic algorithms. A natural approach

is to use integrators working on the Stiefel manifold on

which Q lives. Another one is to use a parametrization

of Q using elementary rotations (we need 6 such rota-

tions for a 3x3 matrix). Regardless of the method used,

computing a complexity map on large airspaces is still

a challenge. Many improvements have been made that

allow now to produce country-sized complexity time

in about 10 minutes with several thousands aircraft in-

volved. Investigation on paralell computing and more

specifically on GPU computing is ongoing : the ex-

pected increase in computation speed will probably al-

low real-time computations even for relatively large air-

spaces.
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