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3D AIRSPACE DESIGN BY EVOLUTIONARY COMPUTATION 

Daniel Delahaye and Stephane Puechmorel ENAC 7, Ave Ed Belin 31055 Toulouse France 

 

Abstract 

This paper presents a new method for 3D 
cutting of geometrical space with application to 
airspace sectoring. This problem comes from the air 
traffic management but the proposed method may 
be applied to many other areas. This problem 
consists in nding a cutting of a 3D volume into 
sectors in order to balance the weights of sectors 
and which minimizes the ow cut on sector 
boundaries. A mathematical modeling of this 
problem has been proposed for which state space, 
objective functions and constraints are defined. The 
complexity of such problem being NP_Hard, 
stochastic optimization have been used to address it. 
An Evolutionary Algorithm has been implemented 
for which chromosome coding and operators have 
been developed. Realistic problem instances have 
been tested on this algorithm for which the 
solutions produced fulfill our objective.  

Introduction 

Air traffic controllers monitor the traffic and 
check that aircraft follow their planed trajectories. 
When two or more aircraft are converging to the 
same point, the controllers have to change the 
heading, the speed or the altitude of some aircraft in 
order to ensure a minimum distance between all 
aircraft. Everyday about 8000 aircraft are flying in 
the French airspace and such amount of traffic 
generates a huge control workload which cannot be 
managed by a single controller (as any human 
being, a controller has working limits and may 
usually be able to manage a maximum of 15 aircraft 
with 3 conflict  points); the airspace is then 
partitioned into sectors each of them being assigned 
to a controller team. When airspace is partitioned 
into sectors, several rules have to be applied in 
order to insure the safety and an effective traffic 

ow. The workload in sectors has to be balanced in 
order to ensure that controllers have roughly the 
same amount of work to do in all sectors. When an 
aircraft crosses a sector boundary, controllers in 
charge of those neighboring sectors have to 
exchange information with pilot and between each 
other in order to insure a safe transfer of the ight 

between sectors. This transfer is called a 
coordination of an aircraft between sectors. The 
way airspace is partitioned may induce different 
amount of coordination and a good sectoring has to 
minimize this number of coordination because it 
cost efforts to the controllers and to the pilots too. 
Those objective have to be optimized by taking into 
account several operational constraints. The rst 
constraint ensures that sectors are convex in the 
airway link directions (An airway is materialized by 
a list of linear links). By this mean, a pilot will not 
encounter the same controller twice during his 

ight. This constraint will then prevent super uous 
coordinations; this means that an aircraft crossing a 
sector will encounter 2 and only 2 sector boundaries 
(route convexity constraint). The second constraint 
will ensure that con ict point will be located at a 
minimum distance from the sector boundaries. 
Aircraft have to follow airways and con ict 
between aircraft may appear only at airways 
crossing. A sector boundary has to be at least at a 
given distance from each airways crossing (safety 

constraint). When a controller has to solve a 
con ict, he needs a minimum amount of time to 
develop a solution. Each controller managing 
individually his sector, if a sector boundary is too 
close to a crossing point, he is not able to solve any 
con icts because he has not enough time between 
the coordination step (with the previous sector 
where the aircraft comes from) and the time the 
aircraft reaches the crossing point. The minimum 
delay time is xed at 7 minutes and can be 
converted into a distance once the aircraft speed is 
known. The third constraint will ensure that aircraft 
stay enough time in sectors for controllers to be 
able to manage them(min stay time constraint). As a 
matter of fact, if an aircraft stays a few seconds in a 
sector, the controller will not be able to manage 
such aircraft; then it brings only super uous 
coordination and the controller is not able to 
produce any services for this kind of aircraft. We 
express this constraint by a minimum distance 
between two boundaries cutting the same airway. 
Finally, a fourth constraint will limit the possible 
shape of synthesized sectors (geometrical 

constraint). Controllers work on a two dimensional 
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radar screen with aircraft tag giving the altitude of 
traf c. This HMI limitation may induce uncertainty 
on the sector which contains the plane. As a matter 
of fact, if the sector border are not perpendicular to 
the ground in the third dimensions, controller may 
have problem to know if an aircraft is still in a 
neighbor sector or already in its own sector. This 
problem is shown in the Figure 1. 

 

Fig. 1. Vertical Border Constraint  

 In Figure 1, the second situation (right side) is 
easier to manage from the controller point of view 
than in the rst one (left part) because of the shape 
of the border in the side view.  

Figure 1 shows an aircraft crossing two sectors 
S1 and S2. The upper left, shows the radar top view 
of sectors S1 and S2. The dash line represents the 
trajectory of an aircraft going from S1 into S2. The 
bottom left shows the side view of S1 and S2 with 
the aircraft descending from S1 into S2. As it is 
shown on this gure, the sector border is not 
perpendicular to the ground (xy). The controllers 
having only the top-view of sector, they have 
dif culties to identify the point of coordination 
when the aircraft is exiting S1 and entering S2. On 
the left of line “a” the aircraft is in sector S1, on the 
right of line “b” the aircraft is in sector S2 but 
between “a” and “b” it is dif cult to know when the 
aircraft will change of sector mainly if it is 
descending or climbing. The way to solve this 
problem is to ensure that sector boundaries are 
perpendicular to the ground in the third dimension 
as it is shown in the right part of Figure 1. The 
bottom right shows the new structure of the vertical 
border which is now perpendicular to the ground. 
The upper right shows the sectors top view with the 
“c” line materializing the sector transition. When 
the aircraft crosses this line, the controllers are sure 
that it is changing of sector even in case of some 
uncertainty in the altitude.  

Furthermore, the shape of sectors in the 
horizontal dimension has to be polygonal ensuring 
linear borders which are necessary for controllers to 
be effective. Then, sectors are cylinders with 
polygonal section.  

Based on the problem objective and constraints 
de nition one can summarized the framework of 
this study: one considers a traf c distribution in the 
airspace which generates a control workload 
density. The problem consists of partitioning this 
airspace into K sectors, in order to minimize both 
objectives: (1) workload balancing between sectors 
and (2) the number of coordinations ( ow cut by 
the sector boundaries). This optimization process 
has to meet four constraints : (1) route link 
convexity constraint; (2) safety constraint; (3) 
minimum stay time constraint; (4) vertical border 
constraint.  

This problem can be viewed as a 3D 
geometrical cutting problem with typical constraints 
and the method presented in this paper may be 
applied to others cutting problem in 3D space. The 
next part gives a summary of the previous related 
works. The third part gives a description of the 
complexity metric used to model the workload. The 
fourth part proposes a mathematical modeling and 
identi es the associated complexity of this 3D 
cutting problem. A fth part gives a brief overview 
of the Evolutionary Algorithms which has been 
used to address such problem. The sixth part gives 
some details about the chromosome coding and the 
associated operators dedicated to this problem. 
Finally, the last part presents results on realistic 
instances of this problem. 

Previous Related Works 

The problem of cutting optimization can be 
summarized the following way. Having a limited 
domain in Rn one has to cut this domain into K 

sectors in order to optimize an objective function. 
This optimization process has to take into account 
several problem dependent constraints.  

This problem may nd many application in the 
industry mainly for the stock cutting optimization 
for which a factory produces material which has to 
be cut into different pieces ordered by the clients. 
The objective consists in minimizing the waste after 
the cutting. This problem has been studied in one, 
two or three dimensions and may be extended to 
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higher dimensionality [1-4]. The associated 
complexity increases with the dimension of the 
space which has to be cut. For stock cutting 
problems, the shape and the size of the synthesis 
sectors are xed and controlled by the demand. 
From the mathematical point of view, this kind of 
cutting problem can be view as an packing problem 
[5-7] which is a typical NP_Hard assignment 
problem. Those techniques cannot be applied to our 
problem because the size and the shape of our 
sectors are not known in advance. Our objective is 
also different as we are not looking at minimizing 
the waste but we try to nd a full partition of the 
airspace (no part of the airspace is left out of 
sectors) in order to balance the weight of the 
synthesis pieces with a minimum cutting section 
(coordination minimization). Depending of the 
dimension of the object that has to be partitioned 
into sectors, the associated complexity may strongly 
change.  

For the 1D space, the object that has to be cut 
is materialized by a line with a linear weight density 
( (x)) (no punctual weights is considered). The total 

weight of the object is   (where L is 

the total length of the object).For this simple case, a 
trivial solution is given by a dichotomy search 
which rst x X1  then x X2  and so on till XK 

(where K is the total number of sectors). When 
punctual weights are introduced in the problem (see 
Figure 2), one are not sure to reach an exact 
solution. 

 

Figure 2. 1D Case where the Strip is Partitioned 

into 4 Balanced Sub-Strips 

The weight of an individual segment k limited 

by  and  is given by: 

   (1) 

where  is the position of the  punctual weight 

and  the associated weight . We build 

the following criterion: 

                           (2) 

and use a classical gradient method to nd the 
minimum of J. When the coordination minimization 
is consider the criterion J is modi ed the following 
way:  

   

                                                                                    (3) 

where the second part represents the cutting section 
minimization. The coordination being a workload 
for the controller, it means that when the boundary 
is built, the associated sectors have to be updated 
with this new weights. This is taken into account in 
the  de nition: 

                                                                               (4) 

where  is a weight factor. The way to solve such 
problem is the same as in the case where the is no 
punctual weight. The two dimensions case is much 
more dif cult to solve because of the size of the 
state space. When the cutting direction is xed a 
priori the problem is the same as the 1D case for 
which the linear weight density is the projection of 
the surface density (x,y) on the cutting direction. 
Depending of this direction, one can nd several 
solutions to the problem. When two cutting 
directions are possible (the sectors are then 
rectangles), there is no way to translate this problem 
into one dimension and the associated complexity 
increases drastically. Having polygonal shape of 
sectors, the number of cutting direction may be 
much higher than two and the associated 
complexity increases accordingly. This problem has 
been studied in [8,9] for which the sectors are 
synthesized by the mean of Voronoi diagram and 
optimized by genetic algorithms. In this approach, 
points called class centers are randomly spread in 
the 2D plan that has to be partitioned and the 
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associated Voronoi diagram is built producing a 
random sectoring of the plane (see Figure 3).  

 

Figure 3. Random Sectoring by Voronoi Diagram 

The Voronoi diagrams produce convex sectors 
ensuring that any line crossing the sector will 
encounter two and only two borders. Having this 
property, such sectoring will always met the route 
convexity constraint. The other constraint are taken 
into account by relaxation of the objective function. 
A discrete model of this approach has been 
proposed in [10]. The approach consists in using a 
mosaic of elementary cells (this maybe the result of 
a Voronoi diagram synthesis) and in building the 
associated Delaunay triangulation (see Figure 4) in 
order to create a connected planar graph. This 
principle makes the constraint management easier. 
As a matter of fact, when a mosaic cell is too small 
or has a con ict point too close to one of its 
boundaries, it is merge with one of its neighbors in 
order to create a bigger cell which met the 
constraint. After such a cell checking, all the cells 
met the constraint and the method consists in 
merging cells by the mean of connected component 
optimization in the Delaunay graph [10]. This 
optimization is based on an evolutionary process. 
This discrete method enable the management of 
bigger airspace and is faster to reach the optimum. 
The two previous models may be straightly 
extended in the third dimension. For the rst one, it 
is only necessary to used 3D position for the class 
centers. This modi cation will induce the synthesis 
on 3D polyhedral sectors. For the second one, one 
has only to consider Voronoi cells in three 
dimensions and build the associated Delaunay 
triangulation inducing a graph with vertex in a 3D 
space. In both cases, such 3D straight extension will 
result in sectors which will not met the geometrical 
constraint. These previous works have been mainly 
done in the 2D case and may not be extended 

straightly in the third dimension. The next section 
introduced the problem modeling which has been 
used in this new 3D approach.  

 

Figure 4. Delaunay Triangulation 

(The Dash Line Represents the Associated 

Vonny Diagram) 

Complexity Metric 

Traf c complexity metrics quantify congestion 
in airspace more accurately than a simple number of 
aircraft which is independent of the traf c 
con guration. This metric captures the level of 
disorder (or organization) of any set of trajectories 
in a 4D space (3D for the space and 1D for the 
time) and represents a good indicator of the 
underlying control workload. The key idea of this 
approach is to model the set of aircraft trajectories 
by a dynamical system which is summarized by the 
following equation: 

                                                                       (5) 

where  is the state vector of the system 

( =[x(t),y(t),z(t)]T) and V : C2 vector eld 
depending on parameters , describe systems which 
integral curves may t the observed trajectories. 

This equation associates a vector speed   to a 

position in the space coordinate and then 
synthesis a particular vector eld. 

Based on the observations of the aircraft 
(positions, speed vectors and times), the dynamical 
system has to be adjusted with the minimum error. 
This tting is done with a Least Square 
Minimization (LMS) method. For each considered 

aircraft i, it is supposed that position i=[xi,yi,zi]T 

and speed vector Vi =[vxi,vyi,vzi]
T are given (radar 

tracker data). An error criterion between the 
dynamical system model and the observation is 
computed:  
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                                                                             (6) 

 

where N is number of aircraft. There are many 
classical ways of obtaining a class of parametrized 
vector elds which ful ll the tting requirement. 
Among them, vector splines allow a control on the 
smoothness of vector elds, which is important in 
our case since civil aircraft maneuvers are based on 
low acceleration guidance laws. Computing traf c 
complexity for a given traf c situation requires 
interpolating a vector eld given only samples 
(positions and speeds of aircraft at a given 
time).Vector spline interpolation seeks the 
minimum of a functional of the form: 

                                                                          (7) 

 

where  is a vector eld de ned on a domain D  
Rn , L is an elliptic differential operator controlling 

smoothness of the solution and ( i,  i)i=1...m are 
the interpolation data.  By introducing the adjoint 
operator LT, optimal vector eld can be shown to be 
a linear combination of shifted version of the 
elementary solution kernel of the differential 
operator LTL.A special case is the so-called “div-
curl” splines with the criterion:  

 

                                                                         

                                                                          (8) 

with ,  positive reals controlling the smoothness 
of the approximation by focusing on constant 
divergence or constant curl. The metric chosen for 
complexity computation relies on a measure of 
sensitivity to initial conditions of the underlying 
dynamical system called Lyapunov exponents. In 
order to gure out what Lyapunov exponents are, 
let consider a point and look at its evolution when 

transported by the dynamical system. Let  be 
xed (initial point) and let  be a point trajectory of 

the dynamical system given by: 

 

                                                                          (9) 

Assume now that trajectory is disturbed by a small 
perturbation  we have : 

 

                                                              (10) 

where  is the differential of the vector 

eld at that satis es:  

 

                                                                             (11) 

The Lyapunov exponents are closely related to 

the singular values of the matrix  and can 

be thought as local shear values for the dynamical 
system. When Lyapunov exponents are high, the 
trajectory of a point under the action of the 
dynamical system is very sensitive to initial 
conditions (or parameters on which the vector eld 
may depend), so that situation in the future is 
unpredictable. On the other hand, small values of 
the Lyapunov exponents mean that the future is 
highly predictable (expected to be comfortable for a 
controller). So, the Lyapunov exponent map 

determines the area where the underlying 

dynamical system is organized. It identi es the 

places where the relative distances between aircraft 

do not change with time (low real value) and the 

ones where such distance change a lot (high real 

value).  

Let us now describe the practical procedure for 
computing 3D complexity maps. First of all, the 
optimal dynamic div-curl approximation for the 
observed trajectories is computed, based on the 
de ning equations. That step requires a linear 
system solving. The second step computes the 
second derivatives matrix  at each point of the 

grid for  trajectory starting at . This is done by 
solving the differential equation 11 with a Runge-

Kutta integrator. The complexity value at point  
is then obtained by averaging Lyapunov exponents 
over the time :  

 

                                                                     (12) 

 

The result of this process is given by a 3D 
Lyapunov exponents map which has to be cut into 
sectors. More information about this metric may be 
found in [11]. The next section introduces the 
model which has been used to address this problem. 
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Problem Modeling 

The current approach is based on an initial 
cutting of the airspace into elementary cells. This 
initial sectoring mayby done by the means of a 2D 
Voronoi diagram for which the class center are the 
plane projection of the 3D crossing point between 
air ows. Based on this initial Voronoi diagram a 
merging process remove the cells with too close 
class centers and the too small ones. After this 
merging step, one has a 2D mosaic on the 
projection of the 3D airspace (see Figure 5). The 
right sideof this gure shows the voronoi diagram 
of the 2D prejection of the 3D cells.  

 

Figure 5. Initial Voronoi Mosaic  

A set of altitude layers is then considered and 
each mosaic cell is then extended in the third 
dimension by duplication of the 2D cell in each 
layer (see Figure 6).  

 

Figure 6. 3D Extension 

For each cell and for each layer, the associated 
workload is summarized by a weight located at the 
position of the cell class center with height given by 
the average altitude of the given layer. Those 
weights are symbolized by black circles on the 
Figure 6. A Delaunay triangulation of this initial 
mosaic is built in order to create a graph for which 
the link value represents the ow going from one 
cell into one of its neighboring cells. This initial 
Delaunay triangulation is extended to each altitude 
layer. This information will be used in the ow cut 
minimization process. Based on this initial mosaic, 
the following sector building process has been used 
in our application. First a set of sector centers is 
de ned: S. Those sector centers are points with 
coordinates in the 2D mosaic plane. The number of 
sector centers is K which is the number of sectors 
that has to be synthesized (|S| = K). Then, K layer 
intervals are de ned in a way that ensure that each 
altitude layer is assigned to an interval or more. 
Such association is called a covering. For instance, 
if 5 layers are considered (1,2,3,4, 5) a possible 
covering of this5 layers with 3 intervals is given by 
:I1 =[1,4]; I2 =[3,5]; I3 =[2,4]. As it can be noticed in 
this example all layers are assigned to one or more 
intervals. A cell association process to the sector 
centers is then applied. This process consists in 
taking each cell and nding the closest sector center 
for which the layer interval contains the cell layer. 
Based on the covering property of intervals, we are 
sure that, after this association process, all the cells 
are associated to one and only one sector center. In 
order to build a mathematical model, the following 
notation have to be introduced. We call C the set of 
elementary cells from the initial mosaic. A cell ci is 

characterized by its position  

where  is the layer number of the cell and its 

weight . The cardinality of this set is given by 

the number of 2D Voronoi cells , times the 

number of layers , so . . We introduce 

K subsets  each of them representing a potential 

sector (K is the number of sectors). A sectoring 
being a partition of the initial cell set, we have the 
following properties: 

                                                  

                                                                    (13) 
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The Delaunay triangulation is represented by a 
graph A for which the link symbolize the 
neighborhood relation between cells; this means 
thata link is built when two cells are neighbor. Each 
link  is weighted by the amount of ow 

transiting from cell i into cell j. Based on those 

notations, one can formalize the objectives of this 
problem. The rst objective  consists in balancing 

the weights of sectors. The weight wk of sector k is 
given by:  

                                                                                                 (14) 

 

The total amount of workload is given by: 

                                                 (15) 

 

 

Sector weight are balanced when . So 

the first criterion  is modeled by: 

                                                      

                                                                   (16) 

 

This criterion may vary from 0, when sectors 
are full balanced, to (K  1) when all the cells are 
into one sector and all the others sectors are empty. 

The denominator   induces  to be independent of 

the total weight. The second objective aims at 
minimizing the ow cut. Based on the Delaunay 
graph A this second objective may be modeled the 
following way: 

                                                                

                                                                  (17) 

where . Those two objective are 

gathered together into a single objective f by the 
mean of a weighted sum: f = . f1+(1  ). f2. There 
is not relaxation of constraints in this objective 
because they are already taken into account by the 
construction method of sectors. As a matter of fact, 
the initial Voronoi mosaic ensure that elementary 
cells met the min stay constraint and the safety 
constraint. The aggregation of cells to their nearest 
sector centers ensures that the route convexity 
constraint is met by sectors. Finally, the use of a 

covering of layers by intervals ensure that the 
synthesized sector will have cylinder shapes with 
polygonal section. Having now a mathematical 
model of this problem, let have a look to the 
associated complexity. The problem to be solved 
can be divided into two separate parts 
corresponding to the two different goals:  

1. Equilibrium of the different sector 
weights;  

2. Minimization of the coordination 
workload.  

The second criterion is typically a discrete 
graph partitioning problem with topological 
constraints and is then NP-hard [12]. The rst 
criterion is a classical classi cation problem with a 
connectivity constraint. One must nd an optimal 

grouping among  possibilities; where  is the 

second Stirling number:  

 

where  is the number of cells and K the number 

of sectors. This problem is NP-hard and stochastic 
optimization is a good candidate to address it. 
Moreover, this kind of problem may have several 
optimal solutions (or near optimal) due to the 
different possible symmetries in the topological 
space and one must be able to nd all of them 
because they have to be re ned by experts (it is 
impossible to know at this step which one is really 
the best). This last point makes us reject classical 
simulated re-annealing [13] optimization which 
updates only one state variable. On the other hand, 
Evolutionary Algorithms (EAs) maintains and 
improves a population of numerous state variables 
according to their tness and will be able to nd 
several optimal (or near-optimal) solutions. EAs 
appear to be relevant to solve this sectoring 
problem.  

Evolutionary Algorithms  

Evolutionary algorithms use techniques 
inspired by evolutionary biology such as 
inheritance, mutation, natural selection, and 
recombination (or crossover) to nd approximate 
solutions to optimization problems. An individual, 
or solution to the problem to be solved, is 
represented by a list of parameters, called 
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chromosome or genome. Initially several such 
individuals are randomly generated to form the rst 
initial population (POP(k) in Figure 7). As can be 
seen, The rst step consists in the selection of the 
best individuals from population POP(k). 
Afterward, recombination operators are applied in 
order to produce the POP(k+ 1) population.  

 

Figure 7. Genetic Algorithm with Tournament 

Selection  

Then each individual is evaluated, and a value 
of tness is returned by a tness function. This 
initial population undergo a selection process which 
identify the most adapted individual. The one which 
has been used in our experiments is a deterministic 
( ,μ)-tournament selection. This selection begins by 
randomly selecting  individuals from the current 
population (POP(k) and keep the μ bests((  > μ)). 
This two steps are repeated until a new intermediate 
population (POPi) is completed. Following 
selection, one of the three following operators is 
applied : nothing, crossover, and mutation. The 
associated probability of application are 
respectively (1  pc  pm)), pc and pm. Crossover 
results in two new child chromosomes, which are 
added to the next generation population. The 
chromosomes of the parents are mixed during 
crossover. Mutation is a genetic operator used to 
maintain genetic diversity from one generation of a 
population of chromosomes to the next. The 
purpose of mutation in EAs is to allow the 
algorithm to avoid local minima by preventing the 
population of chromosomes from becoming too 
similar to each other, thus slowing or even stopping 
evolution. These processes ultimately result in the 
next generation population of chromosomes 
(POP(k+1) in Figure 7) that is different from the 
initial generation. This generational process is 
repeated until a termination condition has been 
reached. The next section presents the application 
of EA to our problem.  

 Application to Airspace 

Based on the previous problem modeling, a 
data coding has to be developed in order to make 
run EA on this problem. The state space may be 
summarized by a set of points in a 2D space with an 
altitude layer interval. The initial chromosome of 
our EA has the following structure:  

x1 
y1 

x2 
y2 

... 

... 
xi 

yi 
... 
... 

xK 

yK 

 

L(M1)  

  

 

L(M2) 
... 
... 
...  

L(Mi)  

 

 

... 

... 

...  

L(MK 1)  

 

 

Each column of this table represents a gene of 
the chromosome. A gene numbered i consists in 
position coordinates (xi,yi), a layer marker level 
L(Mi) and two marker extension limits 

 and  . The sector center enable the 

building of the sectoring for a given layer by the 
mean of an aggregation process of the Voronoi cell 
centers to their nearest sector centers (see Figure 8).  

 

Figure 8. Aggregation Process Example 

The markers are used to easily build a covering 
of the altitude levels by several intervals. Consider 
that K intervals have to be built then K  1 marker 
have to be generated on the layer domain (on 
Figure 9, four intervals are built with three 
markers).  
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Figure 9. Layer Interval Building Process by the 

Mean of Layer Markers 

The makers M1,M2,...,MK are ordered according 
to their layer number :L(Mi) (L(M1)  L(M2)  ...  
L(MK)). The rst interval is built by using minimum 
layer number (0) and L(M1)+ built by using 
minimum layer number (0) and L(M1)+ Ext1sup . 
The second interval begins at L(M1)  and 

ends at L(M2)+ . More generally the interval 

numbered  has the following 

structure: 

 

                                                                (18) 

The nal interval labeled K, is given by: 

 

                                                                          (19) 

The chromosome is initialized by randomly 
drawing 2D points in the underlying surface 
(ground) and makers in the altitude layer domain 
(those markers are then ordered in the increasing 
layer number). This process is then repeated for all 
individuals in the population. An example of 
chromosome coding is given on Figure 10. This 
example presents a mosaic with 5 initial Voronoi 
cells (dash lines) for which 2 sectors are built. The 
number of layers considered is 10 and the rst 
sector addresses the layer 0 to 7 and the second one 
addresses the layers 5 to 10. This has been produced 
by the marker M1 located at the layer 4 with 

= 1 and = 2. The Figure 10 shows 

one of the3 common layers of the two sectors 
(5,6,7). The sector centers are represented by 
symbol G1 and G2. For the layers 0 to 4 only the 

rst sector addresses those layers meaning that all 
the associated cells belong to this sector. On the 
same way cells of the layers 8 to 10 are associated 
to the second sector.  

 

Figure 10. Example of Chromosome Coding 

This coding process has been completed by 
operators. Those operators are used to increase the 
diversity of the population. The crossover operator 
begin by randomly drawing two parents in the 
population of individuals after selection. The 
crossover operates in two steps. The rst step 
consists in changing the position on one sector 
center in each parents (see Figure 11). In this figure 

one sector center is selected in each chromosome 
(one circle and one triangle). Afterward, those 
sector centers are connected by a straight line and 
are randomly moved on this line to create two new 
sectors (triangles). 

 

Figure 11. Crossover Operator  
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First, two genes are randomly selected in each 
parent. The associated sector centers are then 
connected by a straight line. Sector centers are 
randomly moved on this line in order to create two 
children sector centers. The second step of the 
crossover operator exchanges markers between 
parents (see Figure 12). The markers of the children 
come from both parents.  The parents are labeled P1 
and P2, the children C1 and C2. First the marker of 
both parent are gathered together and ordered 
according their layer level. Then, the rst child C1 
take one maker over two in the ordered list, and the 
child C2 takes the remaining ones 

 

Figure 12. Marker Exchange between Parents 

The second operator used for our EA is the 
mutation operator as shown in Figure 13. To mutate 
a chromosome, one sector center is randomly 
selected and is moved by adding noises to its 
geographical coordinates 

 

Figure 13. Mutation Operator  

 This operator may be decomposed into two 
classes: 

1) strong mutation. This rst operator takes 
an individual and randomly initializes the 
position of the sector centers or the 

makers. The choice between those two 
options is random.  

2) medium mutation. First, the more 
unbalanced genes are identi ed. This 
identi cation, is used to put some bias in 
the drawing of the gene which will 
undergo the mutation. The extension of 
the selected marker are then changed by 
taking into account the sign on the 
unbalanced weight of their genes. If the 
sector weight is under the balanced 
weight, the vertical extension of the 
associated interval will be increased and 
it will be decreased if it is over the 
balanced weight.  

Those mutations are randomly selected. The 
tness used by our EA has been built by mixing 

both objective the following way: 

 

where I is an individual and  = 0.8 and  = 0.2. 
This tness has to be maximized and reach its 

maximum when f1 = f2 = 0  fitness= 100. Having 
presented the structure of our Evolutionary 
Algorithm, the next section shows some results on 
large instance of the problem.  

Results 

The parameters of the algorithm have been 
adjusted in order to reach a good performances for 
realistic instance of the problem (instances with 
several hundred cells in the initial mosaic). 

Table 1. Parameters of the Algorithm 

Number of generations 500 

Population size 500 

Probability of Crossover 0.4 

Probability of Mutation 0.2 

Elitism Yes 

( , μ) (5,2) 

 

In order to validate the method, one has to 
produce problems for which exact solutions are 
known. To reach this goal, one has to create 
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symmetries in the problem which are easy to 
investigate from the human being perception point 
of view but which have the same complexity from 
the computer point of view.  

The rst test considers 500 cells which have 
been randomly thrown on a 10×10 square (see 
Figure 14). 

 

Figure 14. Initial Distribution of 500 Cells in a 

10×10 Square with 3D Extension 

Each cell has been extended in the third 
dimension on 10 layers. For the rst layer, random 
weights has been attached to each cell and 
duplicated on all layers. This mean that the total 
weight on each layer is the same, meaning that a 
trivial balanced solution may be reached by cutting 
the overall cube into horizontal layers. On the rst 
layer random ows have been introduced between 
any cells and its neighbor. This distribution of ows 
has been also duplicated in the third dimension. The 
following tests have been run on an Intel P4 
(1.4Ghz) computer. The Figure 15 shows the 
evolution of the tness with generations. The solid 
line represents the fitness of the best individual 
among the population and the dashed line shows the 
associated average fitness. 

 

Figure 15. Fitness Evolution with Generations 

(500 Cells) 

The exact solution is reach for the generation 
30 for which the tness reach the value 100. The 
Figure 16 gives the associated evolution of both 
objective for the best individual. As it can be seen 
on the gure both objective reach the value zero 
meaning that the sectors are full balanced without 

ow cut. A larger instance of this problem with 
1000 cells has been tested by our algorithm. For this 
test, no symmetries have been introduced and 
random values have been used for all cell weights 
and for all ows between cells. The solutions 
produced by the algorithm are very good as it can 
noticed on Figures 17 and 18. 

 

Figure 17. Fitness Evolution with Generations 

(1000cells) 
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Figure 18. Criteria Evolution with Generations 

(1000cells) 

In this case the tness may not be able to reach 
100 because for any partition there is remaining 

ow cut. The remaining relative unbalanced weight 
is 0.45% and the associated relative ow cut is 

0.13%. Those tests have been tried on several 
runs and produced the same kind of results. An 
HMI has been developed for this application in 
order to investigate the physical shapes of sectors 
by air traf c management experts (the Figure14 has 
been produced by the mean of this interface).  

Conclusion 

This paper has presented a new airspace 
cutting method which synthesizes balanced sectors 
with minimum ow cut. This problem is known to 
be NP Hard and stochastic optimization approach 
has been developed in order to address real instance 
of airspace cutting. A mathematical model has been 
developed for which two objective functions has 
been de ned in order to quantify the sector balance 
and the ow cut objective. The 3D cylinder sector 
shapes ensure that the constraint are satis ed. A 
coding process and recombination operators have 
been dedicated to this problem in order to make run 
a classical evolutionary algorithm scheme. This 
algorithm has been tested on realistic instance of the 
problem for which symmetries has been introduced 
in order to identify exact solutions. The results 
show that our EA nd the exact solution. A second 
test with 1000 cells has been tried for which no 
symmetry has been included. The algorithm nd 
very good solution with the same convergence rate 
as in the symmetrical case showing the robustness 
of such method. 
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