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Adaptive Backstepping for Trajectory Tracking of

Nonlinearly Parameterized Class of Nonlinear

Systems
Hakim Bouadi, F. Mora-Camino

Abstract—Adaptive control is of interest in control systems
design not only for its capability to improve performance
and reliability but also for handling parameters uncertainties,
external disturbances and modeling inaccuracies. This paper
addresses a systematic procedure design to develop an adaptive
backstepping tracking control approach for a second-order class
of single input-single output (SISO) nonlinear systems where the
controllability condition is checked. The considered class covers
general feedback linearizable and nonlinearly parameterized
systems. Both of the control and adaptation laws are synthesized
simultaneously based on the positivity and Lyapunov design
approaches. Simulation results for an illustrative numerical
example are provided to illustrate in this case the effectiveness
of the proposed controller.

Index Terms—adaptive backstepping, adaptation law, positivity
principle.

I. INTRODUCTION

NONLINEAR adaptive control has seen a growing interest

in the past two decades. Several approaches are proposed

in the literature considering various classes of nonlinear sys-

tems. There are at least two main commun factors between

the considered classes. The proposed approaches cover both

class of general feedback linearizable systems and linearly

parameterized one.

Nonlinear adaptive control for linearly parameterized non-

linear systems has been one of the active subjects in the field

of nonlinear control [1], [2], [3], [4] and [5] while lot of

dynamic processes from chemical industry and biotechnology

are characterized by nonlinearly parameterized models such

as distillation columns, chemical reactors, friction dynamics,

bioreactors and flight dynamics. In fact, several researchers

started working on this difficult problem and obtained some

interesting results [9]-[12]. It must be noticed that most of the

results are derived under various conditions imposed on the

parameters such as convex or concave parameterization [13].

Among proposed solutions to overcome the problem of

nonlinear parameterization is to find a transformation which
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transforms nonlinearly parameterized systems into systems

with linear parameterization. However, this task remains some-

times very difficult to perform and there is no systematic

method available currently [12].

On the other hand, adaptive control for some classes of

nonlinearly parameterized systems has been attempted in [6],

[7], [8], [9], [14] and [15]. The approach used in [8] deals with

the problem of adaptive regulation of a class of nonlinear

systems. Authors in [7] solve the tracking problem in the

case of first-order plants containing the simplest possible

nonlinearity encountered in bioreactor process models. In [9]

has developed a method for adaptive control design for a class

of first-order systems containing nonlinearities of the form

of ratios of polynomials in the process output with unknown

parameters.

In [13] a systematic design procedure is given for the

explicit construction of one dimensional, smooth adaptive con-

trollers which achieve asymptotic state regulation with global

stability. As a consequence, global adaptive stabilization of

feedback linearizable and nonlinearly parameterized systems is

solvable using a smooth, one dimensional adaptive controller,

without requiring any condition such as convex/concave con-

dition [12] on the unknown parameters.

During the last few years, controllers based-on the backstep-

ping approach have emerged as powerful tool for stabilizing

nonlinear systems both for tracking and regulation problems

[1]. The main advantage of this approach is the systematic

construction of a Lyapunov positive definite function for the

closed-loop, allowing the analysis of its stability propertiers.

For the adaptive version, in [10], for triangular systems,

robust adaptive control techniques are incorporated in the

backstepping control design with flat zones to tackle the

nonlinear parameterization together with a novel smooth pro-

jection algorithms for parameter estimation. For a class of

nonlinearly parameterized cascade systems, a solution to the

problem of global adaptive regulation is given in [11] by

using a novel parameter separation technique combined with

a feedback domination design [16]. By comparaison, only few

results for Adaptive backstepping tracking control for nonlin-

early parameterized nonlinear systems have been established.

In this paper, an adaptive backstepping systematic proce-

dure tracking control design for nonlinearly parameterized

class of second-order nonlinear systems is developed without

requiring any restriction on the unknown parameter. Two main

advantages are verified for the considered class, the control-

lablity condition and the non-existence of internal dynamics
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for the considered output. Both of the control and adaptation

laws are synthesized simultaneously based on the Lyapunov

design approach.

To test the practical effectiveness of the proposed controller

design, developed approach has been applied to a numerical

illustrative example. Simulation results in this case show

satisfactory performances in term of tracking and estimation,

respectively.

II. PROBLEM FORMULATION

A. Preliminaries

Consider a class of nonlinear systems:

ẋ1 = x2 + θf(x1, θ)

ẋ2 = u

y = x1

(1)

where f is a known smooth nonlinear differentiable function

according to x1 and θ, respectively. θ ∈ R represents an

unknown parameter to be estimated. x ∈ R
2 denotes the state

vector, u ∈ R represents the control input and y ∈ R is the

considered output.

The main objective of this paper is to highlight a systematic

procedure design for the development of a controller based-on

an adaptive backstepping approach in order to track a desired

trajectory x1d and to estimate the unknown parameter θ for

the SISO considered class of nonlinear systems.

The relative degree of the considered output y is equal

to two since the control input u appears in its second time

derivative. Then no internal dynamics is associated with this

output.

Considered class can be written under the nonlinear affine

state representation :

ẋ = h(x) + g(x)u (2)

where:

h(x) =

(

x2 + θf(x1, θ)
0

)

, g(x) =

(

0
1

)

(3)

The nonlinear system (2) is input-state linearizable if, and

only if, there exist a region Ω ⊂ R
n such that the vector

fields

[

g, adhg, ad
2
h
g, ....., adn−1

h
g

]

are linearly independent

in Ω and the set

[

g, adhg, ad
2
h
g, ....., adn−2

h
g

]

is involutive in

Ω [17]. Note that the first condition check the controllability

of the system where n denotes the system order and adhg

represents the Lie brackets such as:

adhg = ▽gh−▽hg (4)

The controllability matrix Υ for the system (2) given by:

Υ =

[

g, adhg

]

(5)

is such that:

Υ =

(

0 −1
1 0

)

(6)

and

det(Υ) = 1 (7)

since det(Υ) 6= 0, it can be concluded that ∀(x1, x2) ∈ R
2

and ∀f(x1, θ) ∈ R the considered above system is locally

controllable over R2.

B. Control Design

To synthesize a control law u based on an adaptive backstep-

ping approach for the considered class of nonlinear systems,

let us consider the state variable x2 as a virtual control input

for x1 and the tracking error x̃1 such as:

x̃1 = x1 − x1d (8)

Now, let us introduce a candidate Lyapunov positive definite

function V1(x̃1):

V1(x̃1) =
1

2
x̃2
1 (9)

and the time derivative of the considered Lyapunov function

is:

dV1(x̃1)

dt
= x̃1

˙̃x1

= x̃1

[

x2 + θf(x1, θ)− ẋ1d

] (10)

The asymptotic Lyapunov stability is guaranteed if

V̇1(x̃1) < 0. For that, the virtual control input x2 can be chosen

as:

x2 = −k1x̃1 − θf(x1, θ) + ẋ1d (11)

where k1 is a real positive parameter. Since θ is an unknown

parameter, it is replaced by its estimate θ̂ and x2 becomes:

x2 = −k1x̃1 − θ̂f(x1, θ̂) + ẋ1d (12)

Let ξ be an auxiliary tracking error variable such as:

ξ = x2 + k1x̃1 + θ̂f(x1, θ̂)− ẋ1d (13)

since the time derivative of the tracking error x̃1 is:

˙̃x1 = x2 + θf(x1, θ)− ẋ1d (14)

and by replacing x2 by its expression from (13), we get:

˙̃x1 = −k1x̃1 + ξ + θ̂

[

f(x1, θ)− f(x1, θ̂)

]

+ θ̃f(x1, θ) (15)

where θ̃ represents the estimation error:

θ̃ = θ − θ̂ (16)

In the steady state and by choosing an adequate gain

adaptation, it can be written that the time derivative of the

tracking error x̃1 in (15) becomes:

˙̃x1 = −k1x̃1 + ξ + θ̃f(x1, θ̂) (17)

where:

lim
t→∞

θ̂(t) = θ (18)
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From (13), the time derivative of the auxiliary tracking error

variable ξ is:

ξ̇ = u+
˙̂
θf(x1, θ̂) + θ̂

[

∂f(x1, θ̂)

∂x1
ẋ1 +

∂f(x1, θ̂)

∂θ̂

˙̂
θ

]

− ẍ1d + k1

[

−k1x̃1 + ξ + θ̃f(x1, θ̂)

]

= u+
˙̂
θ

[

f(x1, θ̂) + θ̂
∂f(x1, θ̂)

∂θ̂

]

− ẍ1d − k21x̃1 + k1ξ

+ θ̂
∂f(x1, θ̂)

∂x1

[

x2 + θ̂f(x1, θ)

]

+ θ̃

[

k1f(x1, θ̂) + θ̂
∂f(x1, θ̂)

∂x1
f(x1, θ)

]

(19)

and by replacing the unknown parameter θ by its estimate θ̂,

we get:

ξ̇ = u+
˙̂
θφ1(x1, θ̂) + θ̂φ2(x, θ̂) + θ̃φ3(x1, θ̂)

− ẍ1d − k21x̃1 + k1ξ
(20)

where:

φ1(x1, θ̂) = f(x1, θ̂) + θ̂
∂f(x1, θ̂)

∂θ̂
(21a)

φ2(x, θ̂) =
∂f(x1, θ̂)

∂x1

[

x2 + θ̂f(x1, θ̂)

]

(21b)

φ3(x1, θ̂) = k1f(x1, θ̂) + θ̂
∂f(x1, θ̂)

∂x1
f(x1, θ̂) (21c)

In order to synthesize both the control law and the adap-

tation mechanism simultaneously, another Lyapunov positive

definite function V (x̃1, ξ, θ̃) is introduced such as:

V (x̃1, ξ, θ̃) = V1(x̃1) +
1

2
(ξ2 +

1

γ
θ̃2) (22)

where γ > 0 denotes the gain adaptation.

dV (x̃1, ξ, θ̃)

dt
= x̃1

˙̃x1 + ξξ̇ −
1

γ
θ̃
˙̂
θ

= −k1x̃
2
1 + x̃1ξ + θ̃

[

x̃1f(x1, θ̂) + ξφ3(x1, θ̂)

−

˙̂
θ

γ

]

+ ξ

[

u+
˙̂
θφ1(x1, θ̂) + θ̂φ2(x, θ̂)

− ẍ1d − k21x̃1 + k1ξ

]

(23)

The control law u and the adaptation mechanism
˙̂
θ can be

chosen as:

u = −
˙̂
θφ1(x1, θ̂)− θ̂φ2(x, θ̂) + ẍ1d + (k21 − 1)x̃1

− (k1 + k2)ξ
(24a)

˙̂
θ = γ

[

x̃1f(x1, θ̂) + ξφ3(x1, θ̂)

]

(24b)

where k2 is a real positive parameter. For that, the asymptotic

Lyapunov stability is guaranteed since:

V̇ (x̃1, ξ, θ̃) = −k1x̃
2
1 − k2ξ

2
6 0 (25)

III. ILLUSTRATIVE NUMERICAL EXAMPLE

Let us consider the following system:

ẋ1 = x2 + θ[x2
1 + sin(θx1)]

ẋ2 = u

y = x1

(26)

where the nonlinear function f(x1, θ) which contains the

unknown parameter θ is:

f(x1, θ) = x2
1 + sin(θx1) (27)

From (5), it can be seen that the rank of the controllability

matrix Υ of (26) is equal to two, so the considered system is

locally controllable over R2, ∀(x1, x2) ∈ R
2 and ∀f(x1, θ) ∈

R.

By referring to the previous section, the control law is as

follows:

u = −
˙̂
θφ1(x1, θ̂)− θ̂φ2(x, θ̂) + ẍ1d + (k21 − 1)x̃1

− (k1 + k2)ξ
(28)

with:

φ1(x1, θ̂) = f(x1, θ̂) + θ̂x1 cos(θ̂x1) (29a)

φ2(x, θ̂) = θ̂f(x1, θ̂)[2x1 + θ̂ cos(θ̂x1)] + 2x1x2

+ θ̂x2 cos(θ̂x1)
(29b)

and the adaptation law is:

˙̂
θ = γ

[

x̃1f(x1, θ̂) + ξφ3(x1, θ̂)

]

= γf(x1, θ̂)

[

θ̂2ξ cos(θ̂x1) + 2θ̂ξx1 + k1ξ + x̃1

] (30)

with:

φ3(x1, θ̂) = f(x1, θ̂)

[

k1 + θ̂[2x1 + θ̂ cos(θ̂x1)]

]

(31)

IV. SIMULATION RESULTS

For the application of the numerical example developed

above, two cases are considered. The first one concerns the

estimation of the unknown parameter θ which is taken as a

constant while in the second case, θ is taken as a nonlinear

function of time. Both of the two considered cases are subject

of two studies. Firstly, the simulations are performed without

noise. After, a white gaussian noise w(0, σ) with various

variances is added to the output y = x1 such as:

σw1
= 125× 10−7 (32a)

σw2
= 125× 10−4 (32b)

σw3
= 0.25 (32c)

where σ denotes the variance of the considered white gaussian

noise. For the first case, the simulation data are: x1(0) =
0, γ = 0.35 and θ̂(0) = 2.5 where the parameter θ to be

estimated is:

θ = 2 (33)
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Fig. 1. Simulation results of desired trajectory tracking, tracking error,
parameter estimation and estimation error, respectively.

Fig. 2. Simulation results related to the added white gaussian noise of desired
trajectory tracking and parameter estimation, respectively.

For the second case, the simulation data are as follows:

x1(0) = 0.35 (34a)

γ = 1 (34b)

θ̂(0) = 0.75 (34c)

where the parameter θ to be estimated is:

θ(t) = earctan(−
t

2
) (35)

Despite of the presence of an additive white gaussian noise

w(0, σ) and the dynamic behavior of the unknown parameter

θ, Figure 4 shows a satisfactory performances in term of

tracking and estimation, respectively.

V. CONCLUSION

This paper describes an approach for developing an indirect

adaptive backstepping systematic procedure tracking control

design for nonlinearly parameterized class of second-order

Fig. 3. Simulation results of desired trajectory tracking, tracking error,
parameter estimation and estimation error, respectively.

Fig. 4. Simulation results related to the added white gaussian noise of desired
trajectory tracking and parameter estimation, respectively.

nonlinear systems without any restriction on the unknown

parameter in this case. The choice of the considered class of

nonlinear systems is not fortuitous since it is feedback lineariz-

able and verifies the controllability condition ∀(x1, x2) ∈ R
2

and ∀f(x1, θ) ∈ R. In addition, no internal dynamics is

associated to the considered output.

Control design is based on the construction of a Lyapunov

positive definite function in two steps where both of the control

law and adaptation mechanism are simultaneously synthesized

in order to ensure asymptotic Lyapunov stability.

The proposed controller design had been applied to an

illustrative numerical example for two cases. In the first case,

the adaptation mechanism is related to the estimation of a

constant unknown parameter while in the second one, it is

related to the estimation of an unknown function.

Both of them, are also studied by adding a centered white

gaussian noise to the output y = x1 with different variances.

Simulation results show satisfactory performances in term

of tracking and estimation, respectively.
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In perspective, we would like to apply developed approach

to the longitudinal dynamics for a transportation aircraft.
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