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Abstract— The purpose of this communication is to present a 

new nonlinear control structure for trajectory tracking taking 

explicitly into account actuators saturation. Here trajectory 

tracking by a four rotor aircraft is considered. After 

introducing the flight dynamics equations for the four rotor 

aircraft, a trajectory tracking control structure based on a two 

layer non linear inverse approach is adopted and a supervision 

layer is introduced to take into account the possible actuators 

saturation.  

 
Index Terms— Rotorcraft, nonlinear inverse control,  

saturation supervision, trajectory tracking. 

 

I. INTRODUCTION 

n the last years a large interest has risen for the four rotor 

concept since it appears to present simultaneously 

hovering, orientation and trajectory tracking capabilities 

of interest in many practical applications [1].  

The flight mechanics of four rotor aircarft are highly non 

linear and different control approaches (integral LQR 

techniques, integral sliding mode control [2]) have been 

considered with little success to achieve not only 

autonomous hovering and orientation, but also trajectory 

tracking In this paper,   some simplifying assumptions are 

adopted and the flight dynamics equations for a four rotor 

aircraft with fixed pitch blades, or rotorcraft, are considered.  

One important limitation to perform automatic guidance 

for a rotorcraft is related with the one way effect of rotors 

and its saturation levels. Then the purpose of this study is to 

introduce a supervision layer in a non linear inverse control 

structure to improve maneuverability and trajectory tracking 

effectiveness by this class of rotorcraft. This approach has 

been already considered in the case of aircraft trajectory 

tracking by different authors [3,4, 5].  

It appears that the flight dynamics of the considered 

rotorcraft present a two level input affine structure which is 

made apparent when a new set of equivalent inputs is 

defined. This allows the development of  a non linear 

inverse control approach with two time scales, one devoted 

to attitude control and one devoted to orientation and 

trajectory tracking. However this is done in general without 

considering actuators saturations and when these occur, 

trajectory tracking capability can be largely affected. 
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II. ROTORCRAFT FLIGHT DYNAMICS 

The considered system is shown in figure 1 where  

rotors one and three are clockwise while rotors two and four 

are counter clockwise. In appendix the dynamics of the 

rotors are briefly characterized. 

The main simplifying assumptions adopted with respect 

to flight dynamics in this study are a rigid cross structure, no 

wind, negligible aerodynamic contributions resulting from 

translational speed, no ground effect as well as negligible air 

density effects and very small rotor response times. It is then 

possible to write simplified rotorcraft flight equations [6]. 

     The moment equations can be written as: 
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where p, q, r are the components of the body angular  

 

 

 

 
 
 

Fig 1. Four rotor aircraft 

 

speed, with 
xxyyzz IIIk /)(2 −   and   , I

yyzzxx IIIk /)(4 −= xx, Iyy 

and Izz being the moments of inertia in body-axis and  m the 

total mass of the rotorcraft. The Euler equations are given 

by: 
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where θ, φ, and ψ  are respectively the pitch, bank and 

heading angles. 
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The acceleration equations written directly in the local 

Earth reference system are such as: 
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where x, y and  z are the  centre of gravity coordinates 

and where : 
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and with the constraints: { 4,3,2,10 max ∈≤≤ iFF
i

i }                   (5) 

III. NLI CONTROL APPROACH FOR TRAJECTORY TRACKING 

 

Here we are interested in controlling the four rotor  

aircraft so that its centre of gravity follows a given path with 

a given heading ψ  while attitude angles θ and φ remain 

small. Many potential applications require not only the 

centre of gravity of the device to follow a given trajectory 

but also the rotorcraft to present a given orientation. 

 

A. Attitude Control 

From equations (1) it appears that the effectiveness of the 

rotor actuators is much larger with respect to the roll and 

pitch axis than with respect to the yaw axis. Then it is 

considered here that attitude control is involved with 

controlling the θ and φ angles. In equations (1) the effect of 

rotor forces appears as differences so, we define new 

attitude inputs u1 and u2 as: 

311 FFu −=                  (6.1) 422 FFu −=
      In the heading and position dynamics, the effects of 

rotor forces and moments appear as sums, so we define new 

guidance inputs v1 and v2 as: 

 

311 FFv +=                     (6.2) 422 FFv +=
It is supposed that u1 and u2 can be made to vary 

significantly while v1 and v2  can remain constant.  

Then the attitude dynamics can be rewritten under the affine 

input form: 
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                               ),(' φθ=Y                                  (7.2)   

with 

),,,(' φθqpX = , ),(' 21 uuU =  and ),(' 21 vvV =    (8) 

 

Then, taking profit of non linear inverse control theory, 

it appears that all the attitude angles have  relative degrees 

equal to one and that there is no internal dynamics while the 

output equations can be rewritten as: 
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Then, while 2/πφ ±≠ , the attitude dynamics given by (9) 

are invertible. Then it appears opportune to adopt as a 

partial control objective to assign to the attitude angles 

second order linear dynamics towards their current 

reference values:  
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where φθφθ ωωζζ ,,,  are respectively damping and 

natural frequency parameters while θc and φc  are reference 

values for the attitude angles. Then the resulting non linear 

inverse attitude control law is given by: 
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B. Guidance Control Law 

Considering that the attitude dynamics are stable and 

much faster than the guidance dynamics, the guidance 

equations can be approximated by the control affine form: 
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Here also, the outputs of the guidance dynamics present 

relative degrees equal to 1 while the internal dynamics, 

which are concerned with the attitude angles are supposed 

already stabilized. Then, considering that second order 

linear dynamics are also of interest for the guidance 

variables, we can define desired accelerations by: 
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where 
zyxzyx ωωωωζζζζ ψψ ,,,,,,, are respectively damping 

and natural frequency parameters while ψc, xc, yc and zc   are 

reference values for the attitude angles. Of course, many 

other schemes can be proposed to define desired 

accelerations at the guidance level. 

Once desired accelerations are made available, the inversion 

of the guidance dynamics brings nominal the solution: 
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Fig 2. Proposed control structure 

 

Then, returning to the expression of the attitude control law 

, it happens that the centre of gravity  acceleration terms 

compensate each others and the law becomes simply: 
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The whole proposed control structure is given in the above 

figure 2. 

IV. FLIGHT CONTROL SUPERVISION 

Since the above control approach does not consider 

explicitly the input level constraints, we introduce here a 

supervision layer whose function is to avoid the generation 

of unfeasible reference values for the inputs by modifying, 

as less as possible, the current control objectives. According 

to (5), (6) and (7), the control signals should be such as: 
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and                        2,120 max =≤≤ iFvi
          (21.2) 

 

Conditions (21.1) implies for the desired attitude accelerations to 

satisfy the following conditions: 
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Then, reference values for instant attitude angles 

accelerations can be obtained from the solution of the 

following linear –quadratic optimization problem: 
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Observe that the solution of this problem is equal to ( ) 

if it is feasible with respect to constraints  (24.2) and (24.3), 

otherwise the solution will be on the border of the convex 

feasible set.  
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In the case of v1 and v2 (relations (21.2)) and considering the 

expressions of  θc and φc the above approach leads to the 

consideration of an intricate non convex optimization 

problem. A different approach is proposed here. Let λ be 

such as: 
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then according to (18.1) and (18.2): 
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Feasible reference values for , ,  and rx&& ry&& rz&& rψ&& can be 

obtained from the solution of the following linear –quadratic 

optimization problem: 
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where η  is here a time constant. Let   and   be the 

solution of the above problem, then the control inputs can 

be taken as: 
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Then,  given by: 
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satisfy condition (5). 

 

V. CASE STUDIES 

Here we considered two cases: one where the objective 

is to hover at an initial position of coordinates x0, y0, z0 

while acquiring a new orientation ψ1, and one where the 

rotorcraft is tracking the helicoïdal trajectory of equations: 
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where ρ  is a constant radius and γ  is a constant path angle. 

 

        

    A. Heading control at hover 

 

In this case we get the guidance control laws: 
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with the following reference values for the attitude angles: 

0=cθ    and                      (33) 0=cφ
Here the heading acceleration is given by: 
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2 ψψωωζψ ψψψ −−−= rc

&&              (34) 

Starting from an horizontal attitude ( θ(0)=0, φ(0)=0), 

attitude inputs u1 and u2 given by relation (14) remain equal 

to zero. Then, figures 3 and 4 display some simulation 

results: 
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Fig 3. Hover control inputs 
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Fig 4. Heading response during hover 

 

 

B.  Trajectory tracking case 

 

In this case we get the guidance control laws: 
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Here the permanent reference values for the attitude angles 

are such as: 
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Attitude inputs are given by relation (14) where now: 

 

⎥⎦
⎤⎢⎣

⎡
−=−

aIaItgtg

aI
M

xxxx

yy

//

0)cos/(1 φθ
φ         (41) 

and [ 00)'( =XN ]                        (41) 

 

 In figures 5 to 7 simulation results are displayed where at 

initial time the rotorcraft is hovering: 
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Fig 4. Evolution of rotorcraft horizontal track 
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Fig 7. Rotorcraft trajectory tracking inputs 

 

VI. CONCLUSION 

 

In this communication a nonlinear inverse control 

technique applied to rotorcraft trajectory tracking has been 

considered. This approach leads to the design of a two level 

control structure based on analytical laws.  However the 

possibility of actuators saturation has led to the design of a 

supervision layer whose objective is to modify references 

values for the nonlinear inverse control laws so that the 

tracking performance is maintained as much as possible. 

The applicability of the proposed approach appear 

acceptable since the complexity of the resulting 

optimization problems to be solved online appear to be 

rather low. Then the proposed approach should enlarge the 

field of applications for rotorcraft. This approach could be 

adapted to the supervision of actuators saturation with other 

autonomous aircraft.  

 

APPENDIX 

 

The rotor engine dynamics are characterized by the relation 

between the input voltage Va and the angular rate ω. A 

possible model of rotor dynamics is given by: 
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with a negligible time response for the voltage generator. 

The step response (Va =constant) of the rotor is solution of 

the scalar Riccati equation: 
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In the general case, the solution of (A.3) can be written as 
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Fig 8. Two examples of rotor step response 

It appears from figure 8 that the dynamics of the rotor may 

be close to those of a first order linear system with time 

constant τ’, but as can be seen in (A.6), this value  is a 

function of Va.  If the desired dynamics for the output are 

such as: 

                        )(
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c
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ωωω −−=&                               (A.8)                   

where T is a very small time constant Va can be chosen such 

as: 

))()()1((
1

)( 2tK
T

t
TK

tV Qc

V

a

a

ωτωτωτ ++−=        (A.9)  

The rotor forces are then given by: 

41
2

toifF ii == ω             (A.10) 

while the rotor moments are given by: 

41 toiFkM ii ==             (A.11) 

where f and k are positive constant parameters. 
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