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Abstract—Ground-based aircraft trajectory prediction is a
major concern in air traffic management. A safe and efficient
prediction is a prerequisite for the implementation of automated
tools that detect and solve conflicts between trajectories. This
paper focuses on the climb phase because predictions are less
accurate in this phase. The Eurocontrol BADA1 model, as a total
energy model, relies on the prediction of energy rate.

In a kinetic model, this energy rate comes from the power
provided by the forces applied to the aircraft. Computing these
forces requires knowledge of the aircraft state (mass, airspeed,
etc), atmospheric conditions (wind, temperature) and aircraft
intent (maximum climb thrust or reduced climb thrust, for
example). Some of this information like the mass and thrust
setting are not available to ground-based systems.

In this paper, we try to infer an equivalent weight and
an equivalent thrust profile. These parameters are not meant
to be true, however they are designed to improve the energy
rate prediction. One common thrust setting profile for all the
trajectories is built. This thrust profile is designed in such a way
that the estimated equivalent weight provides a good energy rate
prediction. We have compared the energy rate prediction using
these equivalent parameters and BADA standard parameters.

Keywords: trajectory prediction, energy rate, equivalent

weight, thrust setting.

INTRODUCTION

Predicting aircraft trajectories with great accuracy is central

to most operational concepts ([1], [2]) and necessary to the

automated tools that are expected to improve the air traffic

management (ATM) in the near future. The literature on

trajectory prediction is fairly wide, and one may refer to

[3] for a literature survey on the subject, or [4], [5], or

[6] for the statistical analysis and validation of trajectory

predictors. Other works focus on the benefits provided to

ground-based trajectory predictors by using additional, more

accurate, input data ([7], [8], [9]). A good introduction on

the use of parametric and non-parametric regression methods

for trajectory prediction can be found in [10]. An interesting

model-based stochastic approach is presented in [11], although

only validated in a simulation environment.

On-board flight management systems predict the aircraft

trajectory using a point-mass model of the forces applied to the

center of gravity. This model is formulated as a set of differ-

ential algebraic equations that must be integrated over a time

interval in order to predict the successive aircraft positions in

this interval. The point-mass model requires knowledge of the

aircraft state (mass, thrust, etc), atmospheric conditions (wind,

1BADA: Base of Aircraft DAta

temperature), and aircraft intent (target speed or climb rate, for

example).

Many of these information are not available to ground-

based systems, and those that are available are not known with

great accuracy. As a consequence, ground-based trajectory

prediction is currently fairly inaccurate, compared to the on-

board prediction. A simple solution would be to downlink

the on-board prediction to the ground systems. However,

this is not sufficient for all applications: some algorithms

([12]) require the computation of a multitude of alternate

trajectories that could not be computed and downlinked fast

enough by the on-board predictor. There is a need to compute

trajectory predictions in ground systems, for all traffic in a

given airspace, with enough speed and accuracy to allow a safe

and efficient 4D-trajectory conflict detection and resolution.

Thus, downlinking these missing information might not be

a solution. Currently, the atmospheric conditions are estimated

through meteorological models. Ground-based trajectory pre-

dictors make fairly basic assumptions on the aircraft intent

(see the "airlines procedures" that go with the BADA model).

These default "airline procedures" may not reflect the reality,

where the target speeds are chosen by the pilots according

to a cost index that is a ratio between the cost of operation

and the fuel cost. These costs are specific to each airline

operator, and not available in the public domain. The actual

aircraft mass is currently not transmitted to the ATM ground

systems, although this is being discussed in the EUROCAE

group in charge of elaborating the next standards for air-

ground datalinks. However, airline operators are reluctant to

do this since the mass is a sensitive data.

In this context, this paper focuses on the equivalent weight

concept as a workaround to use the BADA point mass model

without knowing the actual aircraft mass. This concept of

equivalent weight was first discussed in a study [13] based on

synthetic data. Assuming a thrust setting and past vertical rates

to be known, the equivalent weight is the mass minimizing

the gap between computed vertical rates and observed vertical

rates. A second study [14] raises doubts about the reliability of

the vertical rate for this purpose. It suggests to use the energy

rate instead.

Our study focuses on the energy rate prediction, using Mode

C radar data and a weather model as input. We try to improve

the energy rate prediction by infering missing parameters: the

mass and the thrust setting. For one given trajectory, infering

altogether these two parameters leads to degeneracy issues. To

overcome this difficulty, we assume a common thrust setting



profile for all trajectories. This "equivalent thrust" profile is

computed using a least square regression method and a set of

recorded trajectories as input. Finally, our system is composed

of two complementary elements and has been tested on actual

data.

The first element is an equivalent weight estimation process.

Considering an aircraft, we use the information contained in its

past trajectory. With the available information, only the thrust

setting is missing to process the equivalent weight. Assuming a

known thrust setting profile, the equivalent weight is estimated

by minimizing the gap between the computed energy rate and

the past observed values.

The second element is the thrust setting profile used for

mass estimation and energy rate prediction. Using a large set of

trajectories, we design a thrust setting profile oriented towards

minimum prediction error.

Using a large validation set, we compare the performance

of prediction to the BADA model on fresh data using different

setups.

The rest of this paper is organized as follows: section I

introduces a widely used simplified point-mass model, BADA.

Section II introduces a weight estimation process and its

use. The next section, III, describes a way to build a thrust

profile using the weight estimation process. The dataset and

experimental setup are detailed in section IV, and results are

shown in section V.

I. THE POINT-MASS MODEL
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Figure 1. Simplified point-mass model.

A. Simplified Equations

Most ground systems use a simplified point-mass model,

sometimes called total energy model, to predict aircraft tra-

jectories. This model, illustrated on figure 1, describes the

forces applying to the center of gravity of the aircraft and

their influence on the aircraft acceleration, making several

simplifying assumptions2. It is assumed that the thrust and

drag vectors are colinear to the airspeed vector, and that the

lift is perpendicular to these vectors. Thus, projecting the

forces on the airspeed vector axis, the longitudinal acceleration

2Note that more complex point-mass models have been proposed for UAV
or fighter airplanes (see [15]), modeling also the side-slip angle.

a = dVTAS

dt
along the true airspeed (VTAS) axis can be expressed

as follows:

m.a = T −D −m.g.sin(γ) (1)

where T is the total thrust, D the aerodynamic drag of the

airframe, m the aircraft mass, g the gravitational acceleration

and γ the path angle (i.e. the angle between the airspeed vector

and the horizontal plane tangent to the earth surface).

Introducing the rate of climb/descent dh
dt

= VTAS.sin(γ),
where h is the altitude in meter, this equation can be rewritten

as follows (see [16]):

(T −D).VTAS
︸ ︷︷ ︸

power

= m.VTAS.
dVTAS

dt
+m.g.

dh

dt
︸ ︷︷ ︸

total energy variation

(2)

The left member of this equation can be seen as the power

of the forces applied to the aircraft, and the right member can

be seen as the variation of total energy, the energy rate. Several

equivalent forms of this equation can be used (see Eurocontrol

BADA User Manual), depending on what unknown variable

is being calculated from the other known variables.

B. The BADA Power Reduction Profile

In the 3.9 BADA model, the forces involved in power

calculation and fuel consumption are described as parameter-

ized functions. A Matlab toolbox developped for identification

purpose, BEAM, is then used to estimate the value of these

parameters [18]. This process relies on a set of 17 well chosen

reference trajectories. The parameters are estimated in order

to fit the fuel consumption and the rate of climb. Finally, 7

thrust settings are obtained. Each thrust setting is associated

to a flight phase. Only one thrust setting is associated to the

climb phase.

However, according to [16], many aircraft use a reduced

setting during climb in order to extend engine life and save

cost. A correction factor cred is applied to the power computed

with the climb thrust setting. This correcting factor has been

obtained in an empirical way and has been validated with the

help of air traffic controllers.

power

m
= cred.

(T −D)

m
.VTAS (3)

With

cred =







1− 0.15
mmax −m

mmax −mmin

if Hp ≤ 0.8Hmax

1 otherwise

(4)

C. Discussion

Actually, using equation 2 to predict a trajectory requires

a model of the aerodynamic drag for any airframe flying

at a given speed through the air. In addition, we need the

standard climb thrust, which depends on what engines the

aircraft is equipped with. In the experiments presented here,

the Eurocontrol BADA model was used to that purpose.



In addition, one cannot use equation 2 without prior knowl-

edge of the state (mass, position, speed,...) of the aircraft, and

also of the pilot’s intents as to how the aircraft is operated

(actual thrust setting). When they are not downlinked from

the aircraft, some state variables like the true air speed (TAS)

require knowledge of the atmospheric conditions (the air

temperature, the wind and pressure) in order to be computed.

One is usually interested in computing the variation of state

variables like dVTAS

dt
and dh

dt
. If we assume the current state,

the thrust law and the mass to be known, equation 2 is useful

since it provides the equation 5.

VTAS.
dVTAS

dt
+ g.

dh

dt
=

powercomputed

mknown

(5)

Given the equation 5 and knowing the repartition3 of the

specific power
powercomputed

mknown
between dVTAS

dt
and dh

dt
, it is easy

to compute the acceleration dVTAS

dt
and the rate of climb dh

dt
.

This is not the purpose of this paper, however. In this study,

we are only interested in computing the specific power as

precisely as possible.
To go deeper in our analysis, we have to study the forces

applied to the aircraft. The standard climb thrust Tstd is mod-
eled as a function of the true air speed VTAS , the geopotential
pressure altitude Hp and the temperature differential ∆T
(see [17]). However, this standard climb thrust is not always
actually used, so we introduce a thrust coefficent c. Therefore,
the effective thrust is c.Tstd. The drag D is a function of the
mass m, the true air speed VTAS , the geopotential pressure
altitude Hp and the temperature differential ∆T . Finally, the
specific power is given by the equation 6 below.

power

m
=

c.Tstd(VTAS, Hp,∆T )−D(VTAS, Hp,∆T,m)

m
.VTAS (6)

In a ground-based context, having radar data augmented with

a weather model, there are only two missing variables to use

this formula, the mass m and the thrust coefficient c. These

variables have a great impact on the specific power.

Without any additional knowledge, we can use this formula

with the BADA reference mass and the BADA reduced climb

power 4. According to [16], the BADA reduced climb power

was obtained in an empirical way. In this paper, we extract a

common thrust coefficients profile from a large set of recorded

trajectories. Using this thrust profile, we infer the mass of each

new aircraft using its past trajectory in order to improve the

accuracy of the computed specific power.

II. EQUIVALENT WEIGHT ESTIMATION

This concept was developed in [13]. In his paper, Warren

wants to find an "equivalent weight" such that the predicted

vertical rate matches the measured vertical rate. Thus, he has to

set the share factor which rules the repartition of the available

power between kinetic energy and potential energy. Here we

directly compute the specific power, and we want it to be equal

to the observed energy rate VTAS.
dVTAS

dt
+ g.dh

dt
. We do not have

3In BADA, the energy share factor rules this repartition.
4In BADA, instead of having a c coefficient, there is a cred which is not

applied the same way as ours, the BADA formula is power = cred(Tstd −

D).VTAS

to make any assumption on the airspeed law or a climbing rate

or a share factor. However, we have to make an hypothesis on

the chosen thrust coefficient c.

A. Equivalent Mass at a Given Point

At a given point i, knowing VTAS , Hp, ∆T and c, we have

:

Power(V
(i)
TAS , H

(i)
p ,∆T (i), c(i),m)

m
=

V
(i)
TAS

dVTAS

dt

(i)

+ g0
dh

dt

(i)

(7)

The equivalent mass m is obtained by solving the above

equation 7 which can be reduced in a polynomial equation

of the second degree in m, giving us the equation 8.

Pi(m)

m
= 0 (8)

Then, equation 8 can be solved analytically, giving us two

possible solutions. In our experimentations, only one solution

was positive. Thus, when applying this method independently

at each point i of a trajectory, we observed great variations

in the weight estimation, that cannot be explained solely by

the fuel consumption. We think that these variations mostly

come from bad hypotheses on c and poor quality of radar

data. However, we still need to investigate on this issue.

B. Equivalent Mass Using a Set of Points

In order to reduce the error due to the lack of accuracy

on dh
dt

, dVTAS

dt
, Hp, VTAS and ∆T , we now consider a set

of n points, knowing the chosen thrust coefficients C =
(c1, . . . , cn).

If we assume that the mass is the same for all the points5,

finding m minimizing the difference between the observed

energy rate and the computed specific power can be done by

minimizing 9, with m ∈ [mmin;mmax]:

Traj(c1,...,cn)(m) =
n∑

i=1

(
Pi(m)

m

)2

(9)

We search m in [mmin;mmax]. If m minimizing

Traj(c1,...,cn)(m) is in ]mmin;mmax[, then it satisfies

the equation 10.

n∑

i=1

Pi(m)[m.P ′

i (m)− Pi(m)] = 0 (10)

One can solve analytically the fourth degree polynomial equa-

tion 10 using Ferrari’s method. Then, in addition to mmin and

mmax, we may have to consider four more potential solutions.

Among these six potential solutions, we select the solution in

[mmin;mmax] minimizing Traj(c1,...,cn)(m).

5According BADA simulation, a climb from FL130 to FL300, in ISA+20
atmospheric condition with the nominal mass, consumes 1075kg that is to say
1.68% of the initial mass.



III. A COMMON EQUIVALENT THRUST PROFILE

As seen before, in a ground-based context, having radar

data, a weather model and the thrust coefficient c, we can

compute an equivalent mass. In this section we build a

common equivalent thrust profile for all the trajectories, using

a set of recorded trajectories and a least square regression

method.

A. Motivations

1) Mass Inference Issues: Infering altogether the mass m

and the thrust coefficients C = (c1, . . . , cn) of one given

aircraft is a difficult task. If you consider a set of n points

like in the previous section II-B, at any mass m, you can

find a C thrust profile which will perfectly fit the observed

energy rate. There are an infinity of couples (m,C) that fit

the observed energy rate perfectly. Intuitively, a large C with

a large mass m barely produce the same amount of specific

power than a small C with a small mass m.

One can select one couple by injecting some constraints6 on

the set of coefficients C for instance. However, considering a

given aircraft, the mass m of the infered couple (m,C) depends

strongly on the chosen constraint. However, we have no idea

on how to design this constraint, that is to say, how to choose

one couple (m,C) among an infinity of potential solutions. So,

as we do not know how to infer an individual thrust profile C,

we use a thrust profile C, common to all aircraft, for infering

the equivalent mass of each individual aircraft.

2) Energy Rate Prediction Issues: When computing the

energy rate prediction, we need to know a future C =
(c1, . . . , cn) thrust profile. The chosen future thrust coefficients

C are likely to be different from one aircraft to another.

However, predicting an individual future C profile seems hard

to us without knowledge of the future aircraft intent. Thus,

as for mass inference, a predefined thrust profile is used for

specific power predictions.

In order to make consistent mass estimation and specific

power prediction, we use the same predefined thrust profile

for these two purposes.

B. Building a Thrust Profile from Data

Considering a set of K trajectories, we build the thrust

profile (c1, . . . , cn) minimizing the sum over the trajectories

of the squared error min
m∈[mmin;mmax]

Traj(c1,...,cn)(m). That

is to say, we build (c1, . . . , cn) minimizing the overall mean

square error. The function to minimize, AllTraj, is defined

in the equation 11.

AllTraj(c1, . . . , cn) =
K∑

k=1

min
m∈[mmin;mmax]

Traj
(k)
(c1,...,cn)

(m) (11)

The resulting thrust profile is an equivalent profile, it

might be different from the true mean thrust profile, but this

6Continuity, range, etc.

profile is likely to have good predicting performance using the

equivalent weight estimation process described in subsection

II-B. To minimize AllTraj we use a quasi-Newton method,

BFGS [19], with (1, . . . , 1) as the initial vector.

IV. DATA AND EXPERIMENTAL SETUP

A. Data Pre-processing

Recorded radar tracks from Paris Air Traffic Control Center

were used in this study. This raw data is made of one position

report every 1 to 3 seconds, over two months (july 2006, and

january 2007). In addition, the wind and temperature data from

Meteo France are available at various isobar altitudes over the

same two months.

The raw Mode C altitude7 has a granularity of 100 feet.

trajectories were smoothed, using a local quadratic model,

in order to obtain: the aircraft position (X ,Y in a projection

plan, or latitude and longitude in WGS84), the ground velocity

vector (Vx, Vy), the smoothed altitude (z, in feet above isobar

1 013,25 hPa), the rate of climb or descent (ROCD). The

wind (Wx, Wy) and temperature (T ) at every trajectory point

were interpolated from the meteo datagrid. The temperature at

isobar 1 000 hPa was also extracted for each point, in order to

compute a close approximation of ∆T , the difference between

the actual temperature and the ISA model temperature at isobar

1 013,25 hPa (mean sea level in the ISA atmospheric model).

This ∆T is one of the key parameters in the BADA model

equations.

Using the position, velocity and wind data, we computed

the true air speed (TAS), the distance flown in the air (dAIR),

the drift angle, the along-track and cross-track winds (Walong
and Wcross). The successive velocity vectors allowed us to

compute the trajectory curvature at each point. The actual

aircraft bank angle was then derived from true airspeed and the

curvature of the air trajectory. The climb, cruise, and descent

segments were identified, using triggers on the rate of climb

or descent to detect the transitions between two segments.

B. Filtering and Sampling Climb Segments

As our aim is to evaluate the performance of the energy rate

prediction, we focused on a single aircraft type (Airbus A320),

and selected all flights of this type departing from Paris Orly

(LFPO). Needless to say, this approach can be replicated to

other aircraft types.

We have only kept aircraft trajectories above 13 000ft.

The trajectories were then filtered so as to keep only the

climb segments. An additionnal 80 seconds were clipped from

the beginning and end of each segment, so as to remove

climb/cruise or cruise/climb transitions.

The trajectories were then sampled every 500 ft. One c

coefficient will be associated to each sampling altitude. When

adjusting the coefficients c, there must be enough climbing

trajectories at each altitude. In order to have a good estimation

of c, sampling altitudes with at least 2 400 trajectories were

7This altitude is directly derived from the air pressure measured by the
aircraft. It is the height in feet using the pressure setting selected by the
aircraft.



kept. In the prediction phase, we want to estimate the mass on

the first ten points and then, using the next points to evaluate

the prediction with the estimated mass. Thus, trajectories with

less than 30 points were discarded.

At last, our data set contains 3 945 trajectories as shown in

figure 2.
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Figure 2. Energy rate of the 3 945 trajectories.

C. Experimental Setup

In our experiments, four different settings are compared.

These four settings come from the combination of two mass

settings (mBADA and mestimated) and two profile settings

(BADA Cred and thrust profile C). When estimating an

equivalent mass using the standard BADA power reduction

profile in an altitude range from 13 000 ft to 18 000 ft, it can be

assumed that the inequality Hp ≤ 0.8 Hmax(∆T,m) is true8.

Then cred(m) is a first degree polynomial. The equivalent

mass can estimated the same way as in subsection II-B, except

that the Pi in the equation 10 will be third degree polynomials.

The different settings used are summarized by the table I

below, where error(i) denotes the following quantity at the

i-th point of the trajectory:

error(i) =
power(i)(m)

m
−

(

V
(i)
TAS

dVTAS

dt

(i)

+ g0
dh

dt

(i)
)

The set of trajectories was split in two subsets of equal size,

one used to learn the thrust profile and one used to evaluate

predictions with it, the validation set.

For each trajectory of the validation set, we compute the

energy rate predicted from the eleventh point to the last point

8Numerical application sets 0.8.Hmax at 19 144 ft for ∆T at 40K and
m at 77 000kg.

setting description

mBADA m = mBADA(A320) = 64 000kg

mestimated m = argmin
m∈[39 000kg;77 000kg]

10∑

i=1
error(i)

2

BADA Cred
power = cred.(Tstd −D).VTAS

Cred is the BADA power profile given by the equation 4

thrust profile C
power = (c.Tstd −D).VTAS

C is the thrust profile built according the section III-B

Table I
THE TWO MASS SETTINGS AND THE TWO PROFILE SETTINGS. ONE HAVE

TO CHOOSE ONE OF EACH TO COMPUTE THE SPECIFIC POWER.

of the trajectory. The quality of these predictions made with

the different settings are compared. If an equivalent mass

estimation is processed, the mass estimation will be done using

the first ten points. If the BADA reference mass is taken, the

first ten points will have no use. All the statistics on energy

rate prediction presented in section V are computed using

trajectories from the eleventh point to the last point.

V. RESULTS

The equivalent thrust profile was adjusted using a set of

1 972 trajectories. All the results are computed using a large

validation set containing 1 973 fresh trajectories.

A. Equivalent Parameters

The figure 3 plots the distribution of the estimated masses.

It is difficult to interpret. However, the range of the estimated

masses seems quite large. The actual masses are likely to be

more centred.
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Figure 3. Density of the mass estimated using the thrust profile C and the
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With the figure 4, we can see that the thrust coefficient

rapidly crosses the unit value. There are slope variations in the

thrust profile. It would be interesting to understand the reason

of these changes. It may come from inaccuracies in the BADA

modeled power or true changes in the thrust setting. We hit

here one possible limitation of this equivalent thrust profile

concept. The mean thrust setting may be different from an

airport to an other or even from a departure procedure to an

other. Some work has to be done to identify if this concern is

justified. If it is, we might be able to predict these thrust profile

variations and consequently, to furhter improve the energy rate

prediction.
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Figure 4. The built thrust coefficients profile.

B. Prediction Performance as a Function of Altitude

According to the figure 5, the root mean square error

decrease with the altitude. This decrease can be explained

by the decrease of the standard deviation with the altitude.

The four setups have barely the same slope. Setups using the

estimated equivalent mass are significantly better than the two

other setups.

C. Overall Prediction Performance

Table II summarizes the root mean square error on the

energy rate prediction.

Results table II show prediction improvement using the built

thrust profile and the weight estimation. The weight estimation

process reduces the root mean square error by approximately

45%. The thrust profile, extracted from the reference data set,

reduces the root mean square error on the validation set by 5%

which might be not significant. Used together, the root mean

square error is reduced by nearly 50%.
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Figure 5. Root mean square error on the predicted energy rate (in W/kg)
according the prediction altitude.

BADA Cred thrust profile C
mBADA 22.9 17.8

mestimated 12.0 11.5

Table II
ROOT MEAN SQUARE ERROR ON THE PREDICTED ENERGY RATE (IN

W/KG) FOR AIRBUS A320 AIRCRAFT, USING 10 PAST POINTS FOR MASS

ESTIMATION PURPOSE.

CONCLUSION AND FUTURE WORK

In this paper, we present a practical method to improve

the energy rate prediction when the mass and the thrust

setting are unknown. The aim was to extract these missing

knowledge from the aircraft past trajectory. Thrust coefficients

are extracted from a set of trajectories and an equivalent mass

is estimated using 10 past points of the trajectory. Focusing

on a single aircraft type (A320), this method has been tested

using actual radar data and a weather model. On a fresh set

of trajectories, the prediction performance of this method was

compared to the standard BADA prediction performance. It

should be noted that this method can be replicated to other

aircraft types.

Our results show that the thrust profile C combined with the

equivalent weight estimation performs better than the standard

BADA profile with the reference mass. The thrust profile and

the equivalent weight estimation process reduces the root mean

square error by 50%.

From an operational point of view, the proposed methods

could improve aircraft trajectory predictions. Improving en-

ergy rate predictions eventually improves rate of climb and

acceleration predictions. It could also be used for simulation



purpose. From a set of trajectories, we can extract a thrust

profile and a distribution of equivalent masses. Then using

these two elements, we can synthesize aircraft trajectories

close to the original set of trajectories.

In future works, we shall implement this thrust setting

profile in our BADA 3.9 simulator to quantify improvements

in altitude prediction when combined to the equivalent weight

estimation. We shall take into account the effect of the wind on

the energy rate computation. This should improve the thrust

setting extraction, the weight estimation and the prediction.

We will test this process on Mode S radar data which are

more accurate than Mode C radar data. This concept will be

also tested to lower altitude.

Some study on the thrust setting profile has to be done.

This thrust setting profile is extracted from climbing segments.

The horizontal segments were discarded. However, among

climbing segments, the chosen thrust setting may vary accord-

ing the departure procedure, for instance. If this concern is

justified, we might be able to improve even more the energy

rate prediction by extracting from the data one specific thrust

setting profile for each departure procedure. All these concerns

are also related to the robustness of the extracted thrust setting

profile.
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