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Hybrid Backstepping Control for Rotorcraft
Guidance

Antoine Drouin, Jules G. Slama and Félix A.C. Mora-Camino

Abstract— The purpose of this communication is to
display a non-linear control approach based on
backstepping for the positioning and orientation for a
four-rotor aircraft. Realistic rotorcraft flight dynamics
are introduced and the effectiveness of its control
channels is analyzed. Then two complementary
implementations of the backstepping control approach
are considered. The compatibility of these control
approaches with a two-layer control structure devoted
to the guidance of the rotorcraft is displayed. The
resulting control laws are detailed and their expected
performances are discussed. A simulation study is
performed where the performances of the proposed
control structure are compared with those of a classical
non linear inverse control solution.

I. INTRODUCTION

N the last years a large interest has risen for the four-

rotor concept since it appears to present simultaneously

hovering, orientation and trajectory tracking capabilities
of interest for many practical applications [1]. The flight
mechanics of this rotorcraft are highly non-linear and
different control approaches [2], [3], have been considered
with little success to achieve either only autonomous
hovering and orientation or also trajectory tracking.
In this paper we consider the flight dynamics of a four-
rotor aircraft with fixed pitch blades. The control problem
of interest is the design of flight control laws enabling
autonomous positioning and orientation for this class of
rotorcraft. This study investigates the solution of this
problem using a backstepping control approach. Here it is
required that a single continuous control law performs the
whole maneuver while to achieve it by manual control it
appears necessary to go through a succession of elementary
maneuvers since the system is underactuated.
The backstepping control approach, which has also been
applied to airships flight control law design [4], is
introduced. Two different design techniques are developed
following the main guidelines of this approach. These two
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implementations appear of direct interest for the design of
a new two-layer control structure based on backstepping
control laws. The proposed control approach is compared
with a nonlinear inverse control approach introduced in
[10].

II. ROTORCRAFT FLIGHT DYNAMICS

The considered system is shown in figure 1 where rotors
one and three are clockwise while rotors two and four are
counter clockwise. The main simplifying assumptions
adopted with respect to flight dynamics in this study are a
rigid cross structure, constant wind, negligible aerodynamic
contributions resulting from translational speed, no ground
effect as well as small air density effects and negligible
response times for the rotors. It is then possible to write the
rotorcraft flight equations as follows [7].
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Fig. 1. Four rotor aircraft

A. Rotorcraft Flight Equations
The rotor forces and moments are given by:

F=fw ie{l,2,3,4} (1-1)

M, =kF =k f o ie{l2,3,4f (1-2)

Where f'and k are positive constants and ; is the rotational
speed of rotor i. These speeds and forces satisfy the
constraints:

ie{l,2,3,4 (1

D S Fn =S Onae P€11,2,3,4) (2-2)

Since the inertia matrix of the rotorcraft can be considered

diagonal with I, = I,,, the roll, pitch and yaw moment

equations may be written as:
p=UFy—F)+ky gr)/,
g=U(F —F3)+kypr)/1,,

G3-1)
(3-2)



F=(k(F,—F +F, —-F))/I_ (3-3)

Where p, g and r are the roll, pitch and yaw body angular
rates. Here ky=(.-1,) and k,=(_,-1_), where

Iy, I,, and I, are the inertia moments in body-axis, and / is
the length of the four arms of the rotorcraft.

Let ¢, @and w be respectively the bank, pitch and heading
angles, then the Euler equations relating the derivatives of
the attitude angles to the body angular rates, are given by:

$=p+1g(@)(sing q+cosg r) 4-1)
O=cos¢ g—sing r 4-2)
w=(sing g+cosgr)/cosb 4-3)

In this study the wind is given in the local Earth reference frame
by w=(w, w, w.). The wind is supposed constant while the
a, )' of

the centre of gravity, taken directly in the local Earth reference
frame, is such as:

a, = (1/m)((cos(y)sin(8) cos(¢) +sin(y)sin(¢)) F —d,) (5-1)
a, = (1/ m)((sin(y) sin(0) cos(@) — cos(y) sin(@)) F —d )
(5-2)
(5-3)

ground effect is neglected. The acceleration g=(a, «

y

a, =g—(1/m)(cos(8)cos(p) F+d.)

where x, y and z are the centre of gravity coordinates, m is the
total mass of the rotorcraft and:

F=F+F +F+F, (6)
Here the drag force d = (dx d, d. )' is given by:

d=c JG—w)y +G-wy+C-w) [i-w, y-w, z-w) ()

with c¢=1/2 p § C, where p is the volumetric mass of the

air, S is the reference surface for the aerodynamics of the
rotorcraft and C, is its dimensionless drag factor. The
components of the rotorcraft airspeed are:

u,=x-w,, v,=y-w, and w,=z-w, (8
The equilibrium conditions (hovering) in an horizontal wind
(w,=0) with a given heading y are such that:

p=0, ¢=0, r=0,x=0, y=0, z2=0

W/ mg)(cosy w, +siny w,))

-1

0, =arctg((c 9-2)

@, = arctg((c HyH/mg)(sinw w, —cosy w,) cosd,) (9-3)
with

Fi=F,=F,=F,=mg/(4cos8, cosg,) 9-4)

B. Analysis of Rotorcraft Flight Dynamics

Here we are interested in controlling the four-rotor aircraft
so that its centre of gravity reaches and stays hovering at a
predefined position while its heading acquires and
maintains a given orientation. Many potential applications
require this capability to be available in UAVs’ while this

problem can be also considered as a first step towards the
design of more efficient trajectory tracking systems.

The manoeuvre under study is, when performed manually
through direct radio control of the four engine thrusts (see
picture 1), quite difficult to be achieved in one step.
Experimentally it appears that no direct approach is feasible
and that much depends on the rotorcraft attitude angles ¢
and @ specially when considering the control of its
horizontal position error (x-x., y-y.).

Equations (5-1) and (5-2) show that to get any horizontal
acceleration, it is necessary to have a non zero attitude

(¢#0o0r@ #0), they show also that the orientation of the

acceleration is dependent of the heading angle . Equations
(3-3) with (4-3) and (5-3) show that given the attitude
angles ¢ and 6, it is easy to master the heading angle error
(w~y,) and the vertical position error (z-z.). From equations
(3-1), (3-2) and (3-3), it appears that the effectiveness of the
rotor actuators is much larger with respect to the roll and
pitch axis than with respect to the yaw axis. Then we
consider that attitude piloting is involved with controlling
the angles @ and ¢. In equations (3-1) and (3-2), the effect
of the rotor forces appears as differences so, we define new
attitude inputs u, and u,, as:

u,=F-F u,=F-F, (10.1)
In the heading and position dynamics, the effects of rotor
forces and moments appear as sums, so we define new
guidance inputs u,,and u. as:

u,=(F+F)~(F+F) u =F=F+F+F+F, (10.2)

E=[FKFFF] u=[u,uu,u] (11-3)
Equations (3-1), (3-2) and (3-3) are rewritten:

p=Uu,+k,qr)/1,, (12-1)

q=0u,+kypr)li, (12-2)

r=ku,/I, (12-3)

It appears that u, and u, can be made to vary significantly
with u,, and u, remaining constant. Attitude angles ¢ and &
can be seen as virtual controls for the horizontal position of
the rotorcraft. Here the attitude dynamics are considered to
be the fast dynamics , they are at the heart of the control
system. The heading and height dynamics are intermediate
while the dynamics of the horizontal position coordinates
are the slower. This can lead to multilevel closed-loop
control structures.

III. BACKSTEPPING CONTROL

A. The Backstepping Control Approach

The backstepping technique is a rather recent non-linear
control technique, which applies to cascaded systems. The
main idea is to use intermediate state variables as virtual
inputs to take advantage of the causality relations displayed
by the cascaded state representation. The convergence of



the output variables towards their target values is obtained
by the construction, step by step, of an auxiliary Lyapunov
function. This general idea can be developed in different
ways, as it will be shown in the next sub-section.

The main interest of the backstepping approach is that the
stability of the controlled system as well as the convergence
of the outputs towards their reference values can be
guaranteed without inducing, like in the case of the non-
linear control approach, the decoupling of the outputs
dynamics. Indeed, it can be considered that the decoupling
of the outputs dynamics demands an additional effort from
the control channels with then a higher possibility of
saturation for the actuators, either in position or speed,
resulting in downgraded performances. Finally, another
advantage of this approach is that several matrices of
parameters are introduced while constructing the control
law, providing a large variety of possibilities to shape
conveniently the outputs dynamics as well as the control
signals.

B. Direct Implementation of the Backstepping

Consider a cascaded system whose state representation is
given by:

and X, =g(x,,U) (13)

X =X

where x, € R", X, € R" are state variables and u € R" is

the control input and g is a smooth diffeomorphism with
respect to u. The control objective here is to design a
control law such that the state x, can be stabilized at x,,..

Here also, x, can be regarded as a virtual control input for
the dynamics of x, while the dynamics of x, are
controlled by the real control input U . Now, suppose that
there exists a control law x, = G(x,,x,, ) such that the
dynamics of x, can be stabilized at x,, while we can find a

Lyapunov function Vj(x,-x,.), which satisfies the

condition:

Vi(x,—x,)=(0V,/0x,)G(x,,x,.) - W(x,—x,) (14

where W(x, —x.) is a positive definite function of x;. A
possible choice is:
G(x;,x,.) =—A(x, —x,,) (15)

where A is a positive definite symmetric matrix. Then in
this case:

1 '
M@ =20 =W @.x) =5 06 -2,)'(x - x,) (16)
The whole dynamics can be expressed as:
and zZ=w

X, :G()_CI’)_CIC)—i_g (17-1)

where z=x, —G(x,x, (17-2)

and

w=g(x,,u)-(0G/0x,) x, (17-3)

Then a candidate Lyapunov function of the full system is
given by:

V() = %,,2) =V -x,)+1/22'z (18)
The time derivative of V' (x, — x,,, z) is given by:
V(x, = x,,2) =00 /0x) (Gxpx, )+ +2w  (19)
then:
V(=32 =W —x )+ @ /ox)' z+ 2w (20)
and by an adequate choice of w, such as :
w=—-(0V,/0x,)-Qz (1)

where Q is a symmetric positive definite matrix, the full
system is globally asymptotically stable since it satisfies
the following condition:

V(-5 < W(x-x)-2Qz  (22)
Finally, the effective control input is given by:
U=-g"'(x) (@ /) +Q(x,-Gx.x,))  (23)

C. Indirect Implementation of Backstepping

Now we consider the case where the cascaded system
cannot be written easily in the form (13), but it obeys to:

X=gX,U) with Y =h(X) (24)

where XeR", UeR", YeR", g is a smooth vector
field of X and U and 4 is a smooth vector field of
X. The system has, with respect to each
independent output Y;, a relative degree 7;
(Z;":l(ri +1)<n,i=1,...,m)around the state

Xy if the output dynamics can be written as:

yith
1
= A+ B, U) (25)
Y’;r‘mﬂ)
Here we assume that 7, =7, =---=7, =1, where the

jacobian of B with respect to the control inputs is invertible.
In that case, two auxiliary outputs can be defined:

Z=L(Y-Y)+Y and Z,=Y (26)
where L is a positive definite symmetric matrix. A
candidate Lyapunov function is then given by:

1 . ,
Vz ZE(Zl Z1 +Zz Zz) 27
The time derivative of V5 is such as:
V2:Z1'Z1+22'22 (28-1)



or V,=(LX-Y)+2Y)'LY+V)-LY'Y (282
Choosing a control such as :
LY+Y=-A(LY+2Y) (29)

where A is another symmetric positive definite matrix. We
have:
Vo=~(L (Y=Y )+2V)' AL ¥-Y)+V)-Y'LY (30)
and it is straightforward to show that the system is globally
asymptotically stable. The corresponding control law is
given by :

U=-B"(X)ALEY-Y)+(L+28)Y+A4X) B

IV. APPLICATION OF BACKSTEPPING TO
ROTORCRAFT FLIGHT CONTROL

Analyzing relations (3-1), (4-i) and (5-i), i =1 to 3, it
appears that their equations can be separated into two sets:
one relative to the slower dynamics, the horizontal
dynamics, and corresponding to the first case considered in
the previous section and one relative to other dynamics and
corresponding to the second case. The above approaches of
backstepping are now applied to each of the control layer
necessary to perform attitude control and guidance of the
rotorcraft.
A. Control of Rotorcraft Attitude and Level

The attitude and altitude dynamics can be given by the state
equations:

d=p+ig(@)(sing g+cosg r) (32-1)
$=(u,+l1gOsinOu, +kigdcospu,)/l, (32-2)
+P,(p.q,r,4,0)
O=cosg g—sing r (32-3)
é:(lcosgéuq—ksin;/ﬁuq,)/l}y (32-4)
+P,(p,q,r.4,0)
w=(singg+cosgdr)/cosb (32-5)

W =kcosgpu

4

+g,(p,q.7.6,0,p)

Ncos@ I )+Isingu,/(cosf 1) (32-6)

z=v, (32-7)
Z=g—(1/m)(cos(@)cos(@)u, +d_) (32-8)
where the exact expressions of P(p.q.r,9,0)

P(p.q.r.¢,0) and g (p,q,r,¢,0,y) can be derived from
relations (3-i) and (4-1) .
The outputs dynamics (32-2), (32-4), (32-6) and (32-8) take
the form (24) with Y=[¢ 6 vy z|’, U = u with
u=(u,,u,u,,u,). HereX =(p,q,r,0,0,y,z,z2)'
and B(X, u) is such as:
BX,u)=J(X)u (33-1)
with

ltgfsin€ ktgbOcosp

L 0
L , I, klx.f (33-2)
0 c[os¢ - Ism¢ 0
JO)= Ising :) kcosg 0
cosf1,, cos@1l .
0 0 0 —cos¢cosd
L m
and the above matrix is invertible if:
2 .
L)[S ¢ _igosing (sin @ sin g+ cos® g) = 0 (34)

z w
which is the case when ¢ and 6 remains small with respect
to +1/2. We introduce now the two R* symmetric positive
definite matrices L and A and adopt the control law (31)
with

AX)=[F, F, g,

(g—d./m)] (35)

to compute the current input vector u .

B. Horizontal backstepping control layer
The state representation of the horizontal dynamics is given
by:

F=v, (36-1)

y=v, (36-2)

v, =/ m)(cosp)sin(@) cos()+ 10 o
sin(y)sin(¢)) F —d)

v, =1/ m)((sin(y) sin(0) cos(¢) (36-4)

—cos(y)sin(g)) F-d )
where wand F are defined by the inner control loop.
This state representation corresponds to the one studied in
the case of (13-1) and (13-2). Then following the
corresponding backstepping approach, we get with V;
chosen according to relation (23) the following reference
values for gand 6:

@. =arcsin((siny (m &, +d,) (37-1)
—cosy (me,+d,)/ u.)

6, =arcsin((cosy (me, +d )/ u, (37-2)

+siny(me, +d,)/u,/cosd,)
where &, and ¢, are given by:

£, xX—x X
[ }: —(1, +QA)[ C}Q{ } (37-3)
gy Y=Y y

where A and Q are symmetric positive definite matrices.
Then, the horizontal position of the rotorcraft follows the
linear dynamics:

X X X—x,
[,_}+Q[_}+([2+QA){ }:Q
y y Y=Y
Since the actuator settings are determined by the inner
control loop, let us have a look at the corresponding
dynamics. The outputs ¢, 6, y and z of the inner closed
loop follows the dynamics given by:

(38)



(ALY'Y+(ALY (L+2M) Y+ (X -Y,)=0 (39)

When matrices A and L are diagonal, these dynamics are
decoupled and the poles of the decoupled dynamics are the
roots of the m different characteristic polynomials:

P+ (u, +22.)s+A 1, =0 i=ltom (40-1)
where
A =diag(A,,4,,-,A,)
and (40-2)

L= diag(,ul,,uz,m,ym)
and where s is the Laplace variable. In this case, since the
A; and the 4 are positive real, we get always real negative
roots. In the general case, the dynamics modes of the
outputs will be characterized by the solutions of the global
characteristic polynomial:

sl -1,
det( )=0
AL sl,+(L+2A)

Since this last relation is independent of the application it is
possible to study once for all the reachable pole sets within
the left half complex plane.
Remark: In the case of an horizontal wind, a necessary
condition for final convergence and equilibrium,
independent of the choice of matrices A and L or even of
the control approach is given by:
mg/(4cosf, cosd,)< F,

imax

(41)

(42-1)
with
6, = arctg((c ||v_v||/mg)(c05l//c w, +siny, w,)) (42-2)

¢, = arcig((c |[w|/mg)siny, w,  (42-3)
—cosy, w,)cosd,)

where , is the heading reference value.

V. SIMULATION RESULTS

The selected gains for the backstepping control law are
displayed on Table 1 while the selected dynamics for the
attitude, the altitude, the heading and the horizontal position
are second order linear dynamics characterized by their
respective damping coefficients and natural frequencies.
These values are reported on Table 2.

The produced figures display different time responses of
the rotorcraft under either the backstepping control law or a
reference non-linear inverse control law. The comparison is
performed in two stages: first, the responses of the
rotorcraft to a step in attitude (either ¢ or 6) for each
control law, are evaluated. Then, for each control law , the
responses of the rotorcraft to a step in position (x, y or z) are
evaluated and compared. The evaluation of the inner
attitude control loop is important since the guidance
capability of the rotorcraft, an under actuated device, is
directly dependent of the controllability of its attitude
angles.

TABLE I
SELECTED GAINS FOR BACKSTEPPING CONTROL

Ko=-2 K,=-0.23
Ky=- K,=-0.23
K, =-0.02 K;=-0.025
K,=0.12 Kz=0.15
Ky =0.137 K =0.183
K,=0.137 Ky =0.183
TABLE II
SELECTED DYNAMIC PARAMETERS
p=10.8 wp= 10 rad/s
¢s=0.38 wg =10 rad/s
¢,=0.8 w, =2 rad/s
& =0.8 @, = 1.5 rad/s
4 =038 w.=1.5rad/s
¢, =038 w,= 1.5 rad/s

The results (see figures 2 to 5) show that the two control
laws, in both levels, present equivalent performances.
However, while the non linear inverse control law produces
second order linear dynamics for the attitude angles and the
position and heading outputs, the backstepping control law
produces clearly a non linear behaviour for these variables.
In particular (figure 4) , since the final convergences of the
backstepping control law is rather slow, the non linear
inverse solution can produce, for a same response time, a
less input demanding solution. However, as shown in the
following figures, other parameters settings may lead to
responses where the backstepping approach is slightly
superior. Other simulation studies should be performed in
particular to show clearly the advantage of using advanced
non-linear control law instead of empirical-intuitive ones.
Also, the realisation of simulation studies should be of
interest to explore the impact of actuator saturations on the
flight domain and feasible manoeuvres of the rotorcraft.

VI. CONCLUSION

In this communication the applicability of a non-linear
control approach to the positioning and orientation of a
rotorcraft has been treated. Since this system is highly
nonlinear, naturally unstable and rather under-actuated, the
design of a unique control law to perform safely the whole
manoeuvre is not straightforward and a multilevel control
approach must be considered. So a multilevel control
structure has been introduced. It appeared that the direct
application of the backstepping control approaches was not
desirable and that it was more judicious to realize two
different implementations of the backstepping guidelines to
insure first the internal stability and then guidance of the
controlled system.
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