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Abstract Detecting and solving aircraft conflicts, which occur when aircraft sharing the same airspace are
too close to each other according to their predicted trajectories, is a crucial problem in Air Traffic
Management. We focus on mixed-integer optimization models based on speed regulation. We first
solve the problem to global optimality by means of an exact solver. The problem being very dif-
ficult to solve, we also propose a heuristic procedure where the problem is decomposed and it is
locally solved by an exact solver. Computational results show that the proposed approach provides
satisfactory results in reasonable time.
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1. Introduction

The air traffic level currently attained in Europe is around tens of thousands of flights per
day and it is expected to be multiplied by a factor of two during next 20 years. Air traffic is
therefore at the core of the social and economic dynamism of our society. The European project
SESAR gives the guidelines to go towards an Air Traffic Management (ATM) characterized
by more efficiency and more safety, which should essentially result from a higher level of
automation of ATM. The need for automatical tools to integrate human work specially arises
in the context of aircraft conflicts detection and resolution.

Aircraft potential conflicts can be solved in different ways. The most commonly exploited
is based on the idea of achieving separation changing the trajectory (heading angle) or the
flight level of the aircraft involved in the conflict. Another way is based on the idea of separat-
ing aircraft by slightly changing their speeds but keeping the predicted trajectories. A speed
regulation which occurs in a reasonable small range allows a subliminal control as suggested
by the European ERASMUS project [3]. This project showed the advantage of such a control,
which is not even perceived by air traffic controllers. Conflict avoidance is expected to be per-
formed while deviating as little as possible from the original aircraft flight plan, minimizing
the impact of the separation maneuvers. Various solution strategies have been proposed. A
review is provided in [6]. Solution algorithms are currently mainly based on evolutionary
computation [4]. These methods are computationally efficient, but the global optimal solution
and even a feasible solution (with no conflicts) is not guaranteed to be achieved in a given
time. Recent advances in mixed-integer linear and nonlinear programming open new per-
spective for modeling and efficiently solving the addressed problem. The first attempt to use
mixed-integer optimization is by Pallottino et al. in [8], where, though under very stringent
hypothesis, a geometrical construction leads to a mixed-integer linear programming model.
More recently, mixed-integer programming has been proposed again for aircraft conflict reso-
lution (see e.g.[7]).

In this paper, the speed regulation strategy is modeled by mixed-integer nonlinear pro-
gramming, building on [3]. A deterministic global solution is first proposed, using a general-
purpose solver for MINLP. Then, to deal with the difficulty of the problem, another strategy is
also proposed, where the optimality guarantee is forsaken in exchange for the computational
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efficiency. This solution strategy is based on hybridizing mathematical programming and a
heuristic tailored on the problem.

The paper is organized as follows. In Sect. 2 we review mixed-integer nonlinear modeling
of the aircraft conflict avoidance problem. In Sect. 3 we present a global exact solution of a
few randomly generated instances and we propose a heuristic tailored on the problem to gain
computational efficiency. Sect. 4 concludes the paper.

2. Modeling the aircraft conflict avoidance problem

Aircraft are said to be potentially in conflict when their horizontal or altitude distances are less
than given standard separation distances (5NM and 1000 ft1). So, assuming the aircraft flying
on a horizontal plane, the separation between aircraft i and j at the instant time t is expressed
by the following condition:

||xr
ij(t)|| ≥ d, (1)

where d is the minimum required separation distance and x
r
ij(t) is the vector of relative dis-

tance between i and j. We assume, as usually done, that speed changes occur instantaneously.
We can therefore consider uniform motion laws. Hence, for each t, we have:
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rewritten as follows:
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Note that condition (3) has to be checked only when the inner product vr
ijx

rd
ij is negative. In

this case, indeed, aircraft are converging.
In our model, conflict avoidance is achieved by performing a speed change maneuvre. Air-

craft which are in conflict accelerate or decelerate in order to cross their conflict zone at dif-
ferent instant times, solving the conflict. Let A be the set of n aircraft. Decision variables are
qk, k ∈ A, expressing the percentage of speed change of each aircraft with respect to its orig-
inal speed. As prescribed by the ERASMUS project [2], we impose bounds on these variables
in order to have speed changes ranging between −6% and +3% of the original speeds. In
this way, the so-called subliminal control is achieved. We minimize the speed change for each
aircraft together with time intervals during which it flies with a modified speed, in order to
deviate as less as possible from the original flight plan:

min
∑

k∈A

q2k(t2k − t1k)
2, (4)

where t1k and t2k are decision variables representing starting and ending instant times for
aircraft k changing its speed. The order of instant times when aircraft change speed being
unknown, 6 possible time configurations have to be considered for each pair of aircraft and,
for each of them, 5 time intervals [ts, t

′

s]. The constraints of the problem impose aircraft sep-
aration (3) for each time configuration and time interval. This needs the introduction of new
(integer) variables and constraints. See [3] for details. The described model can be relaxed,
for example imposing that aircraft speed changes occur at the instant time t = 0 and that the
new speeds are kept during the trajectories. We consider in the following this relaxed model.
First, we have to express aircraft speeds in (3) in terms of their original speed v and speed
modification q. We also have to check if tm is greater than 0. Equation for tm gives rise to a
constraint, for each pair of aircraft, defining the minimum instant time. To check if tm ≥ 0,

11 NM (nautical mile)= 1852 m, 1 ft (feet) = 0.3048 m
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a binary variable yij for each (i,j) is introduced (yij = 1 if tm ≥ 0, and 0 otherwise), and
constraints are adjoined accordingly. The separation condition is then imposed, for each pair
of aircraft, only when tm ≥ 0:

∀i, j ∈ A, i �= j, yij

(
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2)
)

≥ 0. (5)

The obtained mathematical programming model has as many (nonlinear) separation con-
straints as pairs of aircraft.

3. Solving the conflict avoidance problem

3.1 Global exact solution

We use as a testbed n aircraft in 2-dimensional space, placed on a circle of a given radius r,
with speed v and a heading angle such that their trajectory is toward the center of the circle
(or slightly deviated with respect to such direction). The zone of conflict is around the center
of the circle where aircraft are placed, and each aircraft is in conflict with each other. It is easy
to see that the number of conflicts is n(n − 1)/2, so a large number of conflicts is generated
in the same conflict zone. We solve the problem to global optimality using COUENNE [1], which
implements a spatial Branch-and-Bound based on convex relaxations. Results are reported
in Table 1a (v=400 NM/h). They show that we are able to obtain global exact solutions up
to n = 6 (i.e. 15 conflicts). However, an exact solution turns to be high memory and time
demanding, even for a small number of aircraft, due to the high number of conflicts and the
number of variables and constraints largely increasing with n. Hence, we are not able to solve
the problem for n > 6 even with the relaxed modeling. Objective function values show that
aircraft separation is always achieved with very slight speed changes.

3.2 A heuristic based on local exact solutions

We then propose a heuristic procedure where we solve at global optimality subproblems in-
volving up to 4 aircraft at a time, based on the observation that a solution can be efficiently
computed for problems involving a small number of aircraft.

Let a cluster be the transitive closing on conflicting pairs of aircraft (see, e.g., [5]). The heuris-
tic is based on the idea of decomposing the problem in subproblems (clusters) and solve the
conflict avoidance problem on clusters. Let ncl be the number of clusters. At each step, ncl
problems are sequentially solved by using an exact solver (COUENNE). Combining together
all the results, in general the conflicts are not all solved because aircraft inside clusters are
typically in conflict with aircraft inside other clusters too. After the resolution step on sub-
problems, the number of remaining conflicts is computed. If it is greater than 0, a new step is
performed. To do so, the initial speed (which together with the initial position represents the
data of the problem) of aircraft that are still in conflict is re-initialized taking into account the
solution obtained at the last step. That is, if the (optimal) solution obtained for cluster i is such
that an aircraft in this cluster has been accelerated with respect to its original speed, then its
speed is modified by a random slight further increase. If it has been decelerated, then its speed
is modified by a random slight further decrease. In this way, the information obtained at the
previous step is preserved and the chances to keep aircraft separated inside clusters increase.
To update the speeds, a local search is performed testing a number of candidates and choosing
the one that minimizes the sum, over all conflicting aircraft, of the maximum violation of the
separation constraints for each considered aircraft, divided by the number of remaning con-
flicts. When only one conflict is to be solved, this search is intensified to increase the chances
to solve the problem. Aircraft speeds have to be bounded in the small range [−6%v,+3%v],
so when speeds are modified these bounds have to be checked and speeds adjusted to fulfill
this requirement. This may eventually lead to change the speed scenario provided by local
solutions.

Results are reported in Table 1b. Values are averaged over 10 runs. For all test problems,
all conflicts are solved. Comparing with global exact solutions (Table 1a), it appears that
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decomposing the problem does not significantly affect the quality of the result. In general,
increasing n, faster solutions are obtained using a higher number of smaller subproblems.
Solutions are obtained in reasonable time on problems involving up to 10 aircraft.

Table 1a. Results obtained with COUENNE

ID n r obj CPU time
(sec.)

pb n2 2 1 ×10
2 0.002531 0.15

pb n3 3 2 ×10
2 0.001667 1.45

pb n4 4 2 ×10
2 0.004009 12.87

pb n5 5 3 ×10
2 0.003033 841.33

pb n6 6 3 ×10
2 0.006033 51863.37

n= number of aircraft
r= radius of the circle (NM)
obj= objective function value
ncl= number of aircraft clusters

Table 1b. Results obtained with the proposed
heuristic

ID n r ncl obj CPU time
(sec.)

pb n4 4 2 ×10
2 2 0.005151 26.97

pb n5 5 3 ×10
2 2 0.004729 17.98

pb n6 6 3 ×10
2 2 0.006402 17.33

pb n6 6 3 ×10
2 3 0.007438 341.12

pb n7 7 3 ×10
2 2 0.009215 131.34

pb n7 7 3 ×10
2 3 0.008144 22.99

pb n8 8 4 ×10
2 2 0.008220 759.40

pb n8 8 4 ×10
2 3 0.007551 39.66

pb n8 8 4 ×10
2 4 0.012034 48.99

pb n9 9 4 ×10
2 3 0.009238 97.41

pb n10 10 4 ×10
2 3 0.014047 484.49

4. Conclusions

We presented an approach based on mixed-integer nonlinear optimization for the aircraft con-
flict avoidance problem. We are able to obtain global exact solutions for problems with up to
6 aircraft, while a new heuristic tailored on the problem and based on local exact solutions
allow us to obtain good quality results even on problems involving many conflicts at a time.
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