Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Possibilistic KNN regression using tolerance intervals

Mohammad Ghasemi Hamed 1 Mathieu Serrurier 2 Nicolas Durand 3, 4 
1 MAIA-OPTIM - ENAC Equipe MAIAA-OPTIM
MAIAA - ENAC - Laboratoire de Mathématiques Appliquées, Informatique et Automatique pour l'Aérien
2 IRIT-ADRIA - Argumentation, Décision, Raisonnement, Incertitude et Apprentissage
IRIT - Institut de recherche en informatique de Toulouse
4 IRIT-APO - Algorithmes Parallèles et Optimisation
IRIT - Institut de recherche en informatique de Toulouse
Abstract : By employing regression methods minimizing predictive risk, we are usually looking for precise values which tends to their true response value. However, in some situations, it may be more reasonable to predict intervals rather than precise values. In this paper, we focus to find such intervals for the K-nearest neighbors (KNN) method with precise values for inputs and output. In KNN, the prediction intervals are usually built by considering the local probability distribution of the neighborhood. In situations where we do not dispose of enough data in the neighborhood to obtain statistically significant distributions, we would rather wish to build intervals which takes into account such distribution uncertainties. For this latter we suggest to use tolerance intervals to build the maximal specific possibility distribution that bounds each population quantiles of the true distribution (with a fixed confidence level) that might have generated our sample set. Next we propose a new interval regression method based on KNN which take advantage of our possibility distribution in order to choose, for each instance, the value of K which will be a good trade-off between precision and uncertainty due to the limited sample size. Finally we apply our method on an aircraft trajectory prediction problem.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-00938763
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : jeudi 24 avril 2014 - 15:21:09
Dernière modification le : lundi 4 juillet 2022 - 09:53:52
Archivage à long terme le : : jeudi 24 juillet 2014 - 10:37:55

Fichier

596.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Mohammad Ghasemi Hamed, Mathieu Serrurier, Nicolas Durand. Possibilistic KNN regression using tolerance intervals. IPMU 2012, 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Jul 2012, Catania, Italy. pp 410-419, ⟨10.1007/978-3-642-31718-7_43⟩. ⟨hal-00938763⟩

Partager

Métriques

Consultations de la notice

284

Téléchargements de fichiers

941