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Abstract 
Though there is a considerable agreement amongst past studies about the great variability in 

conflict judgments by Air Traffic Controllers (ATCos), certain behaviors observable in control rooms 

speak in favor of the existence of a common core they would that controllers share regarding conflict 

risk perception. The study presented in this paper began with the construction (from real recordings) of 

traffic scenarios showing two converging aircraft in approach. Three variables characterized these 

traffic scenarios, quantifying respectively horizontal separation, vertical separation and the momentum 

of the formation of the judgment (prediction time span). The conditions created by factorial 

manipulation of three variables led to the design of short scenarios (about 1min) involving two aircraft 

upon which 161 controllers gave their judgments about possible occurrence of a separation loss. A 

first descriptive analysis of the data, conducted in Averty (2005), confirmed the large variability of the 

experts’ judgments but also clearly indicated the global consistency of the results. The data thus called 

for a deeper statistical analysis, the results of which will be presented in the article. In a first step, 

particular models have been constructed for each value of the prediction time span. The comparison 

of the model’s parameters allows evaluating the influence of the time span on the conflict perception. It 

appears for example that the horizontal dimension has more "separating power" that the vertical 

dimension far from the conflict location, but that its relative importance diminishes (along with 

uncertainty) as the conflict resolves. Individual models are then nonlinearly aggregated into an 

"integrated model" by maximum likelihood estimation on the whole dataset. Finally, the relevance of 

this model to individual models is statistically validated, indicating that very few information has been 

lost in the aggregation process. 
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Introduction 
Air Traffic Control (ATC) is composed of several tasks that generally overlap over time. The 

conjunction of these, especially in heavy traffic, may result in the controller's processing capacities 

being exceeded. Global agreement exists for aiding air traffic controllers (ATCos) by providing them 

with automated tools that would perform some of the most demanding subtasks. Among these, the 

Conflict Detection and Resolution (CD&R) processes are traditionally singled out. This sharing of tasks 

in real time between operator and system requires a sufficient knowledge of experts’ key processing 

mechanisms, so as to comply with safety and capacity target levels. In this study, we address the 

conflict detection process and provide a predictive model of ATCos conflict judgments. 

 Relevant research in the domain of conflict detection can be categorized into two fields that 

include automatic detection schemes based on engineering intuition (CD&R systems) as reviewed in 

Kuchar and Yang (2000), as well as controller centered literature that aims at understanding the 

cognitive processes involved in the detection task and favors the investigation of factors that affects 

controllers performance (Leroux, 1999) (Nunes and Mogford, 2003). The CREED project (Conflict Risk 

Evaluation based on Expert Detection) undertaken at the DSNA stems from these two fields as its 

objective is to provide an expert model of Conflict Detection, that is, a model that will have as output 

the expected conflict risk perceived by controller rather than a conflict/non conflict diagnosis based on 

objective threshold metrics as in usual CD&R systems.  

 To this end, a large experiment was conducted in which experienced controllers, confronted 

with pairs of converging aircraft in an approach environment, were asked to provide judgments about 

possible occurrence of a separation loss. In this article we analyze the collected data and present a 

statistical model that predicts the controllers' judgments for the conflict geometries considered in the 

experiment.  

Our contribution is twofold. First, we show how information gathered from the cognitive literature 

on conflict detection can be exploited to describe the conflict geometry in a way that remains close to 

the mental representation of ATCos. Then, we show that this description can be used further to build a 

statistical model that performs well in predicting ATCo conflict risk judgments for the class of conflicts 

considered in the CREED experiment.  

 The paper is organized as follows. The first sections present a brief review of the existing 

research on conflict detection. We then detail the experimental plan and the assumptions which 

underpin it. The derivation of the statistical model is then presented and discussed.   



 
 
Need to complete CD&R schemes 
 

 The difficulty in predicting an insufficient separation between aircraft stems from the fact that a 

significant amount of air traffic cannot be sorted out in advance into the two cases – conflict and non 

conflict – as long as the strict separation minima remain the criteria (Alliot, Durand and Granger, 

2001). Indeed, a fundamental feature of ATC is that uncertainty vitiates the data required for making 

conflict diagnoses. This uncertainty includes a large range of different aspects: variability, ambiguity, 

incomplete or missing data, etc. These come from various (and varying) flight environment factors – 

wind shift, engine parameters setting by pilots, etc. – which result in inaccurate or even inappropriate 

conflict prediction. Management of this uncertainty is therefore central to the conflict detection process 

and appears to differ when it is processed by CD&R systems rather than by using ATCo expertise. 

Thresholds metrics used in CD&R systems have indeed failed until now to adequately meet results of 

experts’ heuristics, especially as they cannot easily take into account important cost aspects such as 

controller’s workload (Kuchar and Yang, 2000). Consequently, the subset of conflicting aircraft coming 

from ATCo expertise and that coming from system algorithms are not the same in general, and can 

not be identified with the subset of factual “losses of separation” that would have resulted from the 

initial conflict contingencies. There is nothing inherently surprising in this difference as, in most cases, 

algorithms used in "tactical collision alerting systems" ultimately aim to automate the conflict detection 

and resolution tasks. As such, they are only marginally interested in complying with controllers’ 

processes.  

 

Xu and Rantanen (2003) acknowledge, however, that data on human performance could provide 

"a guideline for designers to develop and improve automated conflict detection that can off-load the 

controller's spatial temporal cognition". So, our guess is that a step forward could be made if a conflict 

detection model that reproduces the judgments of controllers could be proposed. From the workload 

point of view, this makes perfect sense as conflict-related measures of complexity have persistently 

been found to predict the controller's workload or assessment of traffic complexity in a number of 

studies, most of which were reviewed in Hilburn (2004) (see also Kopardekar and Magyarits (2003) for 

a review of these variables and their integration in a "unified dynamic density metric"). If these 

variables, built on "objective" (as in Kuchar and Yang, 2000) conflict detections models, do well in 



predicting workload, why shouldn't analogous variables built upon a "subjective" model of conflict 

detection perform even better
1
? A more ambitious application of such a model is provided by the 

ongoing European Community-funded project ERASMUS: the basic idea of ERASMUS (and so-called 

subliminal control) is that imperceptible alterations of an aircraft’s speed or climb rate could be used to 

provide ATCos with "lucky traffic", where conflict contingencies are uncannily but “naturally” rare. 

Accordingly, the objective of the "subliminal control problem" as presented in Crück and Lygeros 

(2007) is to "minimize the level of risk that will be perceived by the ATCo, using only imperceptible 

maneuvers". This requires that the controllers' judgments for any potential conflict situation can be 

estimated. Resource-consuming conflict situations could therefore be identified and avoided whenever 

possible.  

 

Human-centered analysis of Conflict Detection 

To build a predictive model of controllers' judgments on conflict detection, it seems necessary to 

understand how this task is performed in real field operations and to focus on the human centered 

aspect of conflict detection. Various cognitive processing and strategies are in fact likely to be used by 

ATCos but their connections with traffic configurations to which they are applied are not clearly 

established (Xu and Rantanen, 2003) (Loft et al., 2007).The fundamental result on the subject is that 

experience acquisition by ATCos particularly results in becoming long in heuristics and short in 

computing within the conflict detection process (Bisseret, 1981).  

This particular feature of ATC practice is responsible for the fact that a large part of conflict 

detection is automated. Indeed, perceptual processes - underlying detection processes - both involve 

heuristics and visually available data. As airspace structure and flow distribution in each sector 

determine specific locations and events from which conflicts are more likely to occur (Loft et al., 2007), 

these processes are basically interpretation ones, automatic, influenced by context and expectation 

(Willems et al., 1999) (Landry, 1999). A daily repeated practice and the rule-based environment of 

ATC (published or usual trajectories) therefore allows controllers to substantially automating the 

detection process (Leroux, 1999). 

Also, this prevalent use of heuristics is likely to favor the development of inter-individual 

differences that may well have existed ab initio: Law et al., (1993), for example, show that men and 

                                                      
1
 Note that, following this idea, conflict detection measures built around a preliminary version of this work have been included in 

the set complexity indicators used in Gianazza and Guittet (2006a, 2006b) to model the link between workload and dynamic 
sectorization in the French airspace. 



women differ in their ability to process velocities and distances concurrently. This explains why, when 

asked to estimate conflict risk, controllers put forward partly different judgments (Averty, 2005), which 

could, a priori, appear unexpected from full performance-level experts. For all that, this variability does 

not systematically prevent consistent judgments from emerging, since judgments also largely depend 

on objective features of the configuration of aircraft trajectories (Averty, 2005) (Nunes and Kirlik 2006). 

Typically, separation assessment on the horizontal plane involves visual heuristics and generally 

calls for pattern processing (Enard, 1974) (Nunes and Mogford, 2003) (Xu and Rantanen, 2003). 

Since conflict detection requires controllers to foresee future behavior and positions of aircraft, a 

projection process (extrapolation) is assumed using both the perceptible current flight data and the 

individual experiences of operators (Endsley, 1995) (Xu and Rantanen 2003) (Davison 2006) (Boag 

2006). Focusing on the former, the separation assessment in the horizontal plane requires the 

controller to evaluate the “time to conflict”. While the time to the closest point of approach (CPA) is the 

exact information from which a possible miss distance could be inferred, Xu and al. (2006) sensibly put 

forward that an intermediate step could exist in such a task, leaning on the 2-D trajectory intersection 

point (IP), easier to perceptually extrapolate than CPA. Although no evidence exists yet to explain the 

method they use, it is conceivable that ATCos initially grade conflict contingencies with regard to the 

mere distance of each target to the IP. This point has been reported to be needed – i.e. extrapolated – 

by controllers (Enard, 1974) (Bisseret, 1981) (Davison, 2006). The distance of each aircraft to this 

point is the salient information, biasing judgments (Law et al., 1993). The closest aircraft is indeed 

preferentially estimated as arriving first over the IP, even for cases where the velocity ratio actually 

makes the furthest away  come first (“distance-over-speed” bias). In fact, the speed ratio has 

contradictory effects, according to literature (Enard, 1975) (Xu and Rantanen, 2003) and it can be 

used in ATC for reinforcing a judgment that has already begun to emerge (Bouju, 1978). Furthermore, 

when present, acceleration is a parameter that controllers perceive with difficulty and do not frequently 

integrate into projected positions (Davison, 2006).   

Despite being established from numerical values, and therefore needing some computation, 

altitude is often found to be the privileged parameter to establish conflict diagnosis (Rantanen and 

Nunes, 2005) (Loft et al., 2007). This diagnosis is magnified by the fact that numerous studies only 

involve aircraft flying levels. When vertical separation is not granted, aircraft attitude – i.e. the fact they 

are level, climbing or descending – seems to have strong effects (Lafon, 1978) (Lamoureux, 1999): 



except for non-radar separated aircraft, i.e. flying either at different altitudes or on clearly distinct 

routes, conflict judgment needs information on the four dimensions (spatial and temporal). As soon as 

one of the involved aircraft is climbing or descending (or supposed to get this attitude in the short or 

medium term), judgment will depend on whether the aircraft will be found to reach the same altitude at 

the moment of the position overlap on the horizontal plane (Boag et al., 2006). Rates of climb/descent 

by themselves are seldom used by controllers, bringing about inaccurate assessment of vertical 

positions (Michard, 1976), except probably for aircraft of identical attitude (Bouju, 1978). Boag et al. 

(2006) underlined the link between complexity of conflict detection and the “number of relations” 

between variables from a pair of aircraft that needed to be processed to perform the diagnosis. They 

proposed metrics to categorize conflicts according to this relational complexity. 

Other geometrical features of trajectories also have an impact on judgment accuracy (Remington 

et al., 2000). An increase in convergence angles generally makes judgments more inaccurate, 

reaching a maximum effect near 90° (Bouju, 1978) (Nunes and Scholl, 2004). According to Law et al. 

(1993), an interaction between aircraft speed and convergence angle also seems to exist, impacting 

the perceived complexity and the accuracy of judgment.  

 

Finally, conflict processing and workload have the closest relationship in ATC (Lamoureux, 1999) 

(Remington et al., 2000) (Averty et al., 2004) (Loft et al., 2007). In particular, conflict classification is 

radically impacted by contextual workload, since it has been shown that ATCos may sort out a part of 

the traffic into either conflict or non conflict with the aim of managing their own workload – a 

phenomenon of workload homeostasis by strategy change (Sperandio, 1978). Actually, maximizing 

the relevance of diagnoses is time/resources consuming (Leroux, 1999) and leads to early defusing of 

the current conflict possibilities in order to regulate workload. This basically means increasing the 

number of conflict diagnoses. Thus, “diagnosing conflicts” does not uniquely depend on the 

configuration of the involved aircraft and their intrinsic separation probability. 

 

Integrating doubt management in Conflict Detection 
 

A large part of research on human-centered conflict detection focuses on the performance of the 

subjects, either through the accuracy of the diagnosis or by the time needed to formulate them. Some 

authors, however, acknowledge that conflict judgment inherently includes a doubt dimension (Enard, 



1974) (Bisseret, 1981) (Leroux, 1999). Bisseret (1981) even showed that the precision of the 

calculations is not of prime importance for the controller. It is indeed far less detrimental for him to 

accept a certain degree of imprecision if it gives him better guarantees against omissions of conflict 

diagnosis, than to use calculations in order to reduce uncertainty to a maximum, and be "surprised" 

from time to time by a diagnostic error. As experience is acquired, computation processes step aside 

in favor of more holistic but robust processes, capable of preventing the cognitively disruptive effects 

of certain events. 

 

Consequently, maintaining the doubt in his/her mental representation is very profitable to the 

ATCo. By deferring the decision to classify a certain traffic configuration into conflict or no conflict for 

as long as is reasonable, the controller minimizes the costs of an error of appreciation. Furthermore, 

she can more easily approach the resolution that is necessary and sufficient. This phase of doubt is 

fundamental in ATC – air traffic control is the “art of doubting” (Leroux, 1999). In other words, it is the 

management of this doubt, i.e. the decision to prolong it or, on the contrary, to suppress it, which 

makes up the heart of know-how in ATC. In line with Bisseret (1981) and Leroux (1999), the 

acquisition of expertise by controllers leads them to substitute computing and accuracy in conflict 

detection in favor of doubt, resulting in a more robust diagnosis, which is globally equivalent in 

accuracy since false responses decrease. 

Our purpose was then to draw an accurate picture of the detection capacity of ATCos, in order to 

model their real conflict judgments. Consequently, we made the following experiment comply with four 

main features:  

- To keep only the number of task components that could be experimentally handled. In 

practical terms, only realistic uncertain data were kept (from the §b above) and a 

single fixed geometrical configuration was considered. 

- To consider a simple (pair-wise) configuration of aircraft. 

- To present traffic scenarios dynamically, using devices (radar screen and maps, flight 

strips) peculiar to each center and flights coming from real local recordings.  

- To integrate doubt expression in responses – doubt being viewed as self-assessed 

reliability on each individual judgment e.g. as a part of ATC expertise.  

 



To sum up, our objective may be restated in the taxonomy proposed by Kuchar and Yang (2000): 

we want to build a three dimensional Conflict Detection model where state propagation is nominal 

(aircraft are assumed to follow their "maximum likelihood trajectory") and management of uncertainty 

is left to the controller. The literature on controller centered issues therefore provides a guideline for 

modeling in that it indicates which factors are most likely to impact judgments and how they should be 

modeled.  

  



Experimentation 
 

In keeping with the above, a set of experiments (CREED project: Conflict Risk Evaluation based 

on Expert Detection) was designed to evaluate the controllers' real detection capacity. It was designed 

so as to allow them to express their opinions on a wide range of conflicts, in order to identify the 

values of the variables (or sources of variations) associated with them: when does it "work" and when 

does it "not work", simply from the controller's point of view? The statistical aspect of the study was 

taken into consideration when drawing up the experimental plan, allowing the data gathered to be 

processed appropriately. 

 

Construction of Conflict Scenarios 

The first step was the design of scenarios for the tests. We call "scenario" a traffic sequence 

involving two converging aircraft, dynamically displayed on a radar screen for about one minute and 

fifteen seconds. Aircraft attitudes and conflict geometry were considered as variables to be controlled 

for and were consequently set once for all scenarios: one aircraft was stable while the other one was 

descending (attitudes) and we imposed a 90° crossing (geometry). 

In this study we focused on conflict configurations for which the descending aircraft crossed the 

altitude of the stable one before overflying their IP. Situations that did not comply with this assumption 

were excluded from our experimental test: even if these cases may perfectly well occur in real 

operations, ATCos handle them by delivering up to the descending aircraft an initial safety clearance, 

e.g. a leveling of one thousand feet higher than the altitude of the level aircraft. This clearance is 

usually imperative until one of the aircraft has overflown the IP. While doing this, controllers show they 

systematically process them as 'certain' conflicts. By no means would responses from controllers upon 

these geometrical configurations have represented ATC expertise, and they were not included in our 

scenarios for this reason. 

 

Once these restrictions on the conflict configurations under examination had been set, three 

variables (sketched in Figure 1) appeared to be necessary to characterize the scenarios. The first two 

variables relate to the horizontal and vertical separation, while the third one describes the temporal 

dimension of the conflict and is considered to be its most significant extrinsic variation.  



Figure 1 

 

1. Ed: the horizontal miss distance between the two considered aircraft, irrespective of their 

altitudes. Accordingly, Ed differs from the horizontal miss distance at the 3-D closest point of approach 

(CPA), and is generally lower unless aircraft are flying level. Therefore, a valid conflict diagnosis for 

low values of Ed requires the additional processing of the vertical dimension. We chose five levels for 

the construction of our traffic scenarios: 0, 3, 6, 9, and 12 nmi. 

 

2. Efl: this variable was set to describe the vertical separation of aircraft. Hypothesizing that 

this would be closer to the actual mental representation of controllers (built from a radar display), we 

defined it as the longitudinal distance (in nmi) existing when the altitude difference between the two 

aircraft regain the separation minimum. Following Bisseret (1981), this variable attempts to reproduce 

the fact that conflict detection involves visual heuristics more than computing. Regardless of the 

strategies they actually use (Boag et al., 2006), controllers need to assess and combine vertical and 

horizontal projections of aircraft, as soon as one of them is climbing or descending. Quantifying what 

can be understood from visual effects of vertical dimension on conflict, Efl aims to remain close to 

those elements supposed to be handled mentally by controllers. As a result, it should reduce noise 

among the responses, therefore giving a better robustness to the mathematical model we aim to infer 

from them. We also selected five levels for this variable: 0, 5, 10, 15 and 20 nmi. 

 

3. DA: (stands for Degree of Anticipation). This variable aims at characterizing conflict 

development and was defined as the longer distance to the trajectory intersection. Though both time 

('prediction time span') and distance ('visual span') measures could have been selected, the distance 

choice reflects the authors’ own experience that, as main information support (radar) shows plane or 

spatial information, controllers spontaneously translate times into distances: to the question "when do 

you think the problem will disappear?", an ATCo will typically respond "when aircraft A arrives here" 

and show a location on the radar screen. This choice of a distance formulation for the conflict 

development variable also finds supports in the literature in conflict detection as it relates to the 

"distance-over-speed bias" phenomenon. Of particular relevance are the experiments on arrival time 

judgments performed in Law et al. (1993), where a systematic "over-reliance on relative distance 



information" was observed. There are six levels for this variable: 6, 10, 15, 21, 28 and 36 nmi. These 

values were computed at the end of the scenario display. 

 

For each TRACON (Terminal Radar Approach Control) in which we planned to perform the 

experiment and for each triplet value (DA, Ed, Efl), we built 3 similar basic scenarios, i.e. using a 

different pair of aircraft each time. This way, we were able to make the callsigns, the aircraft types, the 

location of the IP, the magnetic orientation of trajectories, the vertical speed and the relative speeds of 

the involved aircraft vary - all other things being equal. The chosen number of the modalities of the 

three explanatory variables resulted from a trade-off between the experimental combinatory - keeping 

it manageable - and the search for accuracy that would benefit the mathematical model. Concrete 

values were inferred from recorded traffic in past study investigating conflicts from real ATC operations 

(Averty, 2004). Moreover, we had to take account of the fact that relationships between these 

variables are constrained. Indeed, since DA represents the distance of one of the aircraft to the IP, for 

low value levels of this variable (say 6 nmi), scenarios with high values of Ed and Efl could not exist. 

Consequently, feasible combinations allowed about 75 scenarios to be generated for each of the three 

pairs of aircraft, in each TRACON (Averty, 2005). 

The construction of scenarios specific to each facility was motivated by our desire to reproduce 

the real expertise of controllers. It was therefore important for us to provide the subjects with conflict 

situations that could have been extracted from real local traffic and would not be perceived as artificial. 

Trajectories of aircraft were actually copied from files of real recorded traffic, so that aircraft did not fly 

with artificially constant speeds. 

 
Procedure 
 

Every participant in each experimental site was presented with a random set of scenarios built in 

the following way: for any of the 75 classes of basic scenarios (as characterized by the triplet (Ed, Efl, 

DA), one of the three basic scenarios was selected. The presentation order was itself random. For 

each scenario, the subject was asked to give an opinion in terms of the existence of the separation 

minima (3 nmi or 1000 ft). Overall duration for each participant was less than one hour, as judgments 

were often formulated before the end of the available 1'15" of each scenario.  

 



During the instructions given before the experiment started, it was stressed that the aim was to 

express simply "what your eyes would perceive", referring only to the separation minima. The aim, as 

indicated above, was to minimize the systematic and variable addition of margins linked to setting up a 

resolution. The effect of the "natural" coupling of the two processes - detection and resolution - is to 

produce "noise" in the replies, and to produce judgments that dissimulate the detection process model 

itself. In order to achieve this, it was suggested to the controller, while she was being given the test 

instructions, that she should not project herself into the role of the "controlling controller", but rather 

into that of a tester, or a controller in a mirror position. So the controller was invited to be concerned 

about the existence (or otherwise) of the separation minima, but without being able to act on it, or to 

resolve it. 

  

Figure 2 

 

Controllers’ judgments had to be expressed on an 8-degrees scale on a tactile display (see Figure 

2). From the analysis of conflicts in a past study (Averty, 2004), we postulated that a 8-degrees scale 

should reflect the highest differentiation an expert could express in a conflict diagnosis. Possible 

responses were ordered from "non-conflict sure" to "conflict sure" and presented in two groups: the 

four on the left stood for separation-loss judgments (conflict) whereas the four on the right meant that 

sufficient separation was the most probable outcome (non-conflict). Thus, each group conveyed four 

levels of certainty so that subjects could self- assess while selecting each one (the lower the degree of 

doubt, the darker the key).  

The traffic scenarios were submitted to 161 controllers coming from four different TRACONs, each 

time using the usual local devices and radar maps. The choice of TRACON controllers was only 

governed by opportunities for experiment deployment at that time. The overall sample was composed 

of 75.2% male (mean age 44.8) and 24.8% female (mean age 40.6). All of them had to be fully 

qualified for at least two years, but the mean ages (above) show that most were considerably more 

experienced (generally more than 10 years).  

 

 
 

 



 

 
 
 
 
 
 
 
 
 
 

Statistical Models 

Introduction 

In Averty (2005), a descriptive statistical analysis of the collected dataset was presented. Though 

judgments formulated for given conflict configurations were sometimes found to be very 

heterogeneous across controllers, the global consistency of responses appeared remarkably high, as 

increases in the horizontal or vertical separation of aircraft systematically resulted in a safer "median" 

judgment. Moreover, the graphical analysis of the data also showed that controllers managed 

uncertainty by expressing doubtful responses and thus confirmed the importance of doubt in the 

conflict detection process. The data therefore supported Leroux (1999) in its statement that air traffic 

control is the "art of doubting". These results suggested that the sources of variations identified at this 

stage of the study (Ed, Efl and DA) could be used further to develop a predictive model of conflict 

detection and that the collected data could actually be used to calibrate it.  

The following section presents the derivation of the statistical model and discusses the estimated 

parameters. 

The Ordered Logit Model 

 
The air traffic controllers judged the risk of collision on an ordered scale of eight levels, going from 

"airprox certain" (separation between aircraft will be lost), through "caution", to "no problem". The 

Ordered Logit Model provides a common and convenient framework for analyzing such data in which 

the dependent variable is both discrete and ordered (Greene, 2000). It is based on a natural way of 

representing the decision-making process, consisting of defining a continuous "latent variable", U, 

whose level determines the subject's final reply. If the value of U is less than a certain threshold, noted 

α1, the reply will be "airprox certain"; if the value of U is higher than α1, but less than another threshold 

α2, the reply will be the next one up on the scale of possible replies, and so forth.  



 

As the latent variable U is not observable, it must be reconstructed from the observable variables 

Ed, Efl and DA. In the specific context of the CREED experiment, these variables are supposed to give 

the best explanation of the controller's reply. However, due to its particular nature, the variable DA will 

be treated differently from the others and we will build a model for each value of DA. An "integrated" 

model will be obtained later through the interpolation of these models. Other sources of variations may 

affect the controller's judgment, but though they cannot be or were not observed in the experiment, 

they must nevertheless be incorporated into U, which must be broken down into an observed 

component and a non-observed component:  

 

U=β’ x + ε. 

 

Usually, the non-observed component ε is considered as a noise, thus as a random variable, 

whose law determines the probability of the replies; here we used a logistical law
2
.  The observed 

component is generally modeled by a linear combination of the explanatory variables; for a fixed value 

of DA, it will therefore be formalized by the linear relation: 

’x = 1Ed + 2Efl + 3EdEfl 

where the unknown coefficients β1, β2, and β3, are called regressors; note the presence of the term Ed 

x Efl which captures the crossed influences between the two variables Ed and Efl.  

 

Ordered Logistic models for each DA 

 

For each given DA, the model is determined by ten coefficients that need to be estimated. The 

method used for the estimation is based on the maximization of the log-likelihood, which depends on 

the data observed and the coefficients; an optimization algorithm is then used. The estimated 

parameters are shown in Table 1. 
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 DA=6 DA=10 DA=15 DA=21 DA=28 DA=36 

α1 1,506 0,862 -0,040 -0,704 -1,376 -1,793 

α2 2,399 1,898 1,124 0,525 -0,084 -0,237 

α3 
2,840 2,316 1,668 1,078 0,589 0,413 

α4 
3,181 2,653 2,155 1,564 1,239 1,157 

α5 
3,733 3,185 2,751 2,215 1,850 1,804 

α6 4,050 3,603 3,255 2,826 2,346 2,376 

α7 4,747 4,299 4,143 3,595 3,137 3,178 

β1 
0,232   0,405   0,315  0,281  0,188  0,231 

β2 0,660  0,400  0,236  0,158  0,097  0,077 
β3 -0,036  -0,026  -0,006                -0,003               0,001               -0,002               

 

Table 1: Estimation of the ordered logistic model parameters:  

(Significance codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0,05 ‘’ 0,1 ‘ ‘ 1) 

 

The Ordered Logit Model belongs to the class of Generalized Linear Models: a linear combination 

of explanatory variables (the latent variable U in our setting) is nonlinearly linked to the dependent 

variable. Interpretation of the parameters of the model is therefore analogous to the interpretation in  

linear models, provided the link between the “latent variable” and the dependent variable is well 

understood. In our model, an increase of U implies that more risk is perceived by the controller. 

 
 
First, one may observe that β1 and β2 are always positive and significant. This supports a very 

natural intuition: the direct effect of an increase in the separation minima translates into a decrease in 

the perceived risk. However, one needs to consider the impact of the cross-product parameter β3: for 

values of DA greater or equal to 15, β3 is not significant and its point estimate is very low. It is thus 

unsurprising that we actually observe a positive direct effect of Ed and Efl on the latent variable for 

reasonable conflict geometries. Moreover, the fact that the cross influence of Ed and Efl for these 

conflict geometries is low supports the idea that, when the time pressure is low, controllers have a 

rough estimate of the conflict geometry: any increase in vertical or horizontal separation directly 

translates into a decrease in the perceived risk.  

 

When DA equals 10, β3 is negative and significant but remains small enough for the direct effect of 

Ed and Efl on the latent variable to stay positive: the perceived risk still decreases when the conflict 

geometry becomes less dangerous. However, the negative β3 indicates that actual separation 

somehow begins to matter. For example, the perceived risk decreases less for a given increase in Ed 

(resp. Efl) when Efl (resp. Ed) is higher. That is, when the prediction time span is short and separation 



of aircraft is ensured vertically (resp. horizontally), an increase in horizontal (resp. vertical) separation 

does not reduce the perceived as much as it would have in the case of non-separated aircraft. This, 

again, is a very intuitive result. 

 

Finally, when DA equals 6, β3 is negative and significant but becomes large enough to induce a 

negative direct effect of Ed and Efl on the perceived risk. This happens for  Ed greater than 6.44 or Efl 

greater than 18, that is once separation, given the very short prediction time span, is obvious: indeed, 

we observe that for these values of (Ed, Efl), the median response regarding the perceived risk is the 

safest.  

 
Figure 3 

 
 

 

Another interesting fact about estimated parameters is that the relation β1/β2 varies linearly as a 

function of DA as shown in Figure 3. This relation provides information on the variable that is the "most 

used" during the "conflict/no conflict" diagnosis: in an extreme case, if it was equal to 0 (respectively 

infinity), the controller would only base his judgment on Efl (respectively Ed). As these two variables 

are expressed in the same unit and describe horizontal distances, it can be estimated that when the 

relation β1/β2 equals 1, Ed and Efl are evenly discriminating in the controller's judgments. This fact 

tends to prove that, in our setting, ATCos privilege Efl for DA less than 12nmi whereas Ed becomes 

dominant for DA over 12nmi. This finding is consistent with previous results on conflict detection: 

according to Loft et al. (2007) and the studies quoted therein, ATCos indeed “appear to prefer using 

altitude to heading and speed information when determining the likelihood of aircraft conflict” and 

seem to use “lateral separation only in circumstances where vertical separation is questionable”. The 

scenarios proposed in this study display conflict situations in which one aircraft is descending and 

crossing the other's altitude. Since separation is first granted vertically (as explained in the experiment 

design section, the other types of conflict are avoided as much as possible in real life operations), it is 

natural to recover the dominance of the vertical dimension for small DA, that is when aircraft have 

similar altitudes and the rate of descent may actually be used (Bouju, 1978). For high values of DA, 

the vertical separation is instead questionable since vertical positions of the descending aircraft are 



inaccurately projected (Michard, 1976). ATCos have therefore to rely primarily on planar separation for 

these large DA.   

 

 

 
Figure 4 
 

 Using these coefficients, we can then calculate for each value of Ed and Efl the probability of 

observing a given reply and compare these predictions with the observations. Such a comparison is 

provided in Figure 4, where probabilities for each response are presented for the pair Ed = 0 and Efl = 

0. Answers are ordered by perceived risk and with black (resp. dark gray) standing for high (resp. low) 

perceived risk. The agreement between the model and the data is very good for each value of DA.  

 

Integrated model 

 

So far we have constructed logit models for each of the values of explicative variable DA. In order 

to be able to interpolate, it becomes necessary to integrate this variable into a more general model, 

which we will call "integrated model". We opted for the approach depicted in Figure 5: first, the variable 

DA being given, the regressors and thresholds have to be estimated. This will in turn allow the 

observed part of U to be computed for fixed values of Ed and Efl. The expression of the noise 

distribution function will then be used to compute the probabilities for each reply. 

 
Figure 5 

 
 

We therefore need to evaluate the seven thresholds and the three regressors, for DA values that 

are different from those already considered. An appropriate technique to handle this problem is to use 

non linear regression: after having established as many ordered logistical models as values of DA 

(DA=6, 10, 15, 21, 28, 36), we have a sample of six values for each parameter. Non-linear regression 

would then allow each of the parameters to be expressed as a function of variable DA. These 

functions have to be chosen a priori in a certain family: the better the family choice, the closer the fit of 

the parameters. So, the first step needed to build the integrated model consists in determining the 

form of the 10 parameters as a function of DA. To this end, we used the samples for each parameter 



we obtained by computing the six ordered logit models, one for each DA.  We selected, a priori, a 

common model for the parameters:  
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This choice for the family of non-linear functions was made because they provide a parsimonious 

way to model monotonous responses that have a finite value in DA=0 and an horizontal asymptote at 

DA฀, that is properties that are satisfied by the seven thresholds and two of the three regressors (β2, 

β3). As the last regressor (β1) could be easily parameterized using the linear relationship described in 

the previous section, this specification of the model was expected to perform well on our data.  

Non-linear regressions gave a first numerical estimation for each of the 29 parameters of the 

model and a graphical inspection of the results confirmed the relevance of these choices. It also gave 

some further information on the form of the model: in particular, the coefficients 

iC  were close 

enough to be constrained to be equal, as could the coefficients 

iC . These restrictions imply that 

thresholds on the one side and β2 and β3 on the other side converge at the same speed to their 

respective asymptotes. Lastly, the coefficient

3A  

was nearly equal to zero and we decided to assume 

it was. This imposes that β3 is asymptotically null for large values of DA. Given that β3 was found to be 

statistically significant for DA greater or equal 15 nmi, this assumption is actually very natural. Under 

these assumptions, the integrated model depends on 21 parameters.  

 
 

However, though it gives a good insight into the relevance of the family functions, performing 

independent regressions is best considered as a first step in the modeling process. Indeed, the initial 

dataset is only used through the estimated parameters. Then if a single parameter is estimated using 

6 observations rather than the 10385 that could be potentially used, it is reasonable to think that some 



information has been lost in process. More importantly, the impacts on the latent variable of the 

departure from point estimations (for the available DA values) are not likely to compensate for one 

parameter to another and may lead to inconsistent estimate. A way to circumvent these problems 

could be to perform a global weighted regression of the parameters (using the computed covariance of 

the parameters as weights), but it might be preferable for simplicity to maximize a global log-likelihood 

constructed on the whole data sample. Note that the latter method presents the great advantage to 

work with non-concentrated values of DA (and thus would extend to other variables standing for the 

prediction time span, one being suggested [Stankovic and al., 2006]).  

 

Surely, even if they are estimated on a large dataset, 21 parameters remains a large number. 

However, it should be acknowledged that a large part of these parameters relate to the thresholds, the 

number of which was "imposed" by the number of response categories that were offered to the 

controllers during the experiment. The latent variable, which formally describes how the perception of 

the geometry evolves with the prediction time span, needs only 6 parameters to be described. 3 more 

parameters would be needed to calibrate the model if we were only interested in the binary choice 

"conflict/no-conflict". The supplementary parameters describe the data with more richness as they 

allow the whole set of judgments to be recovered and therefore adequately reproduce doubt. 

 

In this paper, the final model was obtained by expressing the integrated log-likelihood and 

numerically maximizing it. To facilitate convergence, we used the parameters obtained by non-linear 

regression as starting values for the optimization algorithm. The resulting curves are displayed in 

Figure 6.  

 
 Figure 6 
 
 
Finally, it is of interest to investigate the loss of accuracy of the integrated model for the 6 values 

of DA for which we know the optimal parameters. This can be assessed by testing for each DA the null 

hypothesis that the local parameters (the parameters obtained by maximizing the log-likelihood for a 

given DA) are equal to the integrated parameters (the parameters obtained though the integrated 

model). We therefore ran a series of 6 likelihood ratio tests (see e.g. [Greene, 2000]). The results are 

presented in Table 2, where LVG (resp. LV) stand for the integrated (resp. local) log-likelihood.  



 

 

DA 6 10 15 21 28 36 

LVG -828.08 -1308.74 -2374.87 -3369.98 -3906.24 -4002.14 

LV -823.71 -1305.09 -2370.92 -3364.29 -3901.13 -4001.57 

p-value 0.56 0.7 0.64 0.33 0.42 1 

Table 2: Comparison between the model LVG with the model LV by way of the log-likelihood 
test. 

 
 

These p-values
3
 indicate that the null hypothesis may never be rejected at any usual significance 

level. This means that the loss of accuracy induced by the interpolation of the parameters is very low. 

Hence, there is nothing in the data that would cause rejection of the integrated model. This robustness 

supports the idea that the model could be used as a building block to design ATC support tools.  

Conclusion 
 

In this article, we have presented the results of an experiment conducted on a large number of 

experienced controllers that would make it possible to derive a “controller-like” model of conflict 

detection.  

 

With regard to the experimental plan, a particular effort was put into the design of traffic scenarios 

and the definition of the explanatory variables. As these were supposed to reproduce the perceptual 

heuristics used by controllers in their actual detection process and therefore often rely on a planar 

representation of the conflict geometry, they differ from the ones that would typically be used in 

engineering approaches, such as those reviewed in Kuchar and Yang (2000). However, they are, as 

explained, relatively well supported by the cognitive literature on conflict detection. As for the statistical 

model to be constructed, a key requirement was that it should properly account for doubt. Doubt, 

indeed, is central in the work of ATCos and a better understanding of traffic configurations where it 

occurs could therefore be of some interest in the design of operational tools. In this aspect, the 

European project ERASMUS provides a concrete example of potential application.  

 

                                                      
3
 The null hypothesis is not rejected as soon as the p-value is greater than the significance level α, e.g. α=0.05. 



A graphical analysis of the data, presented in Averty (2005), showed that judgments exhibited a 

high degree of variability but were “globally” consistent, in the sense that any increase in the horizontal 

or vertical separation of aircraft systematically resulted in a safer “median” judgment. As variability was 

mainly observed for conflict situations for which judgments were not definite, the author concluded that 

the data adequately reproduced doubt and could be used to build a controller-centered model of 

conflict detection. The derivation of such a model is presented in some detail in the present article. In 

the first part of the statistical analysis presented here, we estimated Ordered Logit Models for given 

values of DA, our variable describing the temporal dimension of the conflict situation. The use of this 

type of model is very natural given the discrete and ordered nature of the expressed judgments, but 

also presents the great advantage of inherently accounting for doubt. Comparison of the model 

parameters across DA indicated that the relative importance of the horizontal and vertical separations 

evolved with conflict development, with the horizontal separation dominating away from the conflict 

location, and the vertical dominating close to it. In the second part of the statistical analysis of the data, 

an “integrated” Ordered Logit Model was derived using maximum likelihood estimation and a proper 

family of functions. The integrated model was then statistically validated on the “fixed DA models” and 

we proved that no significant loss of accuracy had occurred in the derivation process.  

 

As of now, the model presented in this article may be used to predict controllers’ judgments, including 

doubt, for the particular class of conflict geometries considered in the experiment. It is a very 

supportive result in our research effort to provide a general model of controllers’ judgments, but much 

work remains to be done if one wants to generalize the model to other conflict geometries. Some 

factors (convergence angle, contextual workload, for example) that impact the conflict/non conflict 

diagnosis have been kept constant in the experiment and the robustness of our model should be 

tested against these sources of variations. We can expect, for example, our model to be 

“conservative” for non-perpendicular crossings, as it is often shown that controllers’ judgment is the 

least precise when the convergence angle is 90° (e.g. in Law and al. (1993)). However, if drastic 

changes rather than small variations were to be imposed on the conflict geometry, it is possible that 

other explanatory variables would need to be considered to describe the conflict. Indeed, the ones 

defined in this study remain close to the perception of the controller for the range of approach conflict 

geometries considered and it is unclear whether they generalize well or not. In this direction, the 



recent findings of Nunes and Kirlik (2006) suggest that good agreement between controllers’ 

judgments and “objective” conflict probabilities may exist. The judgments collected for this study could 

therefore be used to calibrate more general models of conflict detection, such as the one introduced in 

Cruck and Lygeros (2007). Note that these potential extensions require new data to be gathered and a 

new experiment, which we are currently designing. 

 

Finally, from a human-factor perspective, it would also be of great interest to evaluate the 

heterogeneity of controllers. Variability of judgments was broadly discussed in Averty (2005) and is 

partly accounted for in the Ordered Logit Model presented in this paper, but could be further 

investigated. This is the purpose of ongoing research in the CREED project.  
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Figure1: Illustration of the three explanatory variables as they were used in the traffic scenarios. Two 
aircraft (here: AFR123, passing through 14700ft and FBAAC flying level at 6000ft) were dynamically 
shown on radar during 1 minute and 15 seconds. Before the end of this period, i.e. when the value of 
DA was computed, the subjects had to express their judgments about the conflict risk. These 
judgments also related to the values of Ed and Efl. The positions of the aircraft, where Ed and Efl are 
computed, are only displayed here for clarity purpose.  
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Figure 2:  The tactical display used to collect the responses. Two groups of four keys were available 
for the subjects on the interface, ranging from “conflict sure” on the left to “non conflict sure” on the 
right. For each scenario, ATCos had to select the key that reflected at best their judgment.    

  



 

 

Figure 3: Variation of the ratio β1 /β2 versus DA (nmi): estimated ratios and fitted linear relationship.  
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Figure 4: Comparison between observed data and predicted data for Ed=0 and Efl=0. 
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Figure 5: Integrated approach: as DA, Ed and Efl are fixed, the regressors and thresholds will be 
calculated, hence the value of the observed part of U. The noise distribution function allows calculation 
of the probabilities for each reply. 

 
 
 



 
 

 
 

  
Figure 6: Integrated model: variation of the estimated thresholds and regressors versus DA 
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