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On the composition of convex envelopes for
quadrilinear terms∗

Pietro Belotti, Sonia Cafieri, Jon Lee, Leo Liberti, and Andrew Miller

Abstract Within the framework of the spatial Branch-and-Bound algorithm for
solving Mixed-Integer Nonlinear Programs, different convex relaxations can be ob-
tained for multilinear terms by applying associativity in different ways. The two
groupings((x1x2)x3)x4 and(x1x2x3)x4 of a quadrilinear term, for example, give rise
to two different convex relaxations. In [6] we prove that having fewer groupings of
longer terms yields tighter convex relaxations. In this paper we give an alternative
proof of the same fact and perform a computational study to assess the impact of the
tightened convex relaxation in a spatial Branch-and-Boundsetting.
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1 Introduction

One of the most crucial steps of the spatial Branch-and-Bound algorithm for solv-
ing Mixed-Integer Nonlinear Programming (MINLP) problemsis the lower bound
computation. When the MINLP is factorable, it is possible toconstruct a convex re-
laxation automatically by means of a particular type of lifting reformulation (called
MINLP standard form [27, 10]) first proposed in [16] and then exploited in most
existing sBB algorithms [22, 1, 27, 9, 31, 5]. If we consider polynomial problems,
higher order monomials are recursively rewritten as products of monomials of suf-
ficiently low order for which a tight convex relaxation (possibly the convex enve-
lope) is known. Each lower order monomial is replaced by an added variable, and
an equality constraint defining the added variable in terms of the monomial it re-
places is adjoined to the MINLP. This operation is carried out recursively until the
MINLP consists of a linear objective, some linear constraints, and severaldefining
constraintsof the form wj = h j(x,w) for all j in some appropriate setJ, where
the functionsh j represent monomials. To obtain a convex relaxation, each defining
constraint is replaced by a set of constraints defining the convex relaxation of its
feasible set, thus yielding a convex relaxation for the whole problem.

Let B = [xL,xU ]. The quadrilinear feasible setS4 = {(w1,x1,x2,x3,x4) | w1 =
x1x2x3x4} ∩ B over a box can be lifted in many different ways according to the
way associativity is applied: the grouping((x1x2)x3)x4, for example, yields the
set S2,2,2 = {(w1,w2,w3,x1,x2,x3,x4) | w2 = x1x2 ∧ w3 = w2x3 ∧ w1 = w3x4} ∩
B, whereas the grouping(x1,x2,x3)x4 yields S3,2 = {(w1,w2,x1,x2,x3,x4) | w2 =
x1x2x3∧w1 = w2x4}∩B. Since convex/concave envelopes exist in explicit form for
both bilinear [2, 16] and trilinear terms [18, 17], we can derive two different con-
vex relaxations ofS4. The first,S̄2,2,2, consists in replacing the bilinear constraints
wi = x jxk appearing inS2,2,2 by the corresponding bilinear envelopes. The second,
S̄3,2, consists in replacing the trilinear terms with the trilinear envelope and the bi-
linear term with the bilinear envelope. A question then arises naturally: which one
is tighter?

In [6] we proved thatS̄3,2 ⊆ S̄2,2,2 and performed a computational study of the
containment of the convex relaxations when different parameters were varied. In
this paper we provide an alternative proof (based on formal grammars) of the same
result, and then test the impact of the tightened convex relaxationS̄3,2 using sBB.

The rest of this paper is organized as follows. In Sect. 2 we present the main
motivations of this work and a literature review on convex relaxations for multilinear
monomials and their impact on a sBB algorithm. In Sect. 3 we propose a theoretical
framework, based on concepts from the formal languages theory, to compare convex
relaxations of multilinear monomials obtained as a composition of convex envelopes
of lower-degree monomials. In Sect. 4 we discuss some computational experiments
aimed at comparing different convex relaxations of quadrilinear terms in a spatial
Branch-and-Bound setting. Concluding remarks are given inSect. 5.
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2 Motivation and literature

The above discussion implies that deriving convex relaxations that are as strong as
possible (i.e., that approximate the convex hull as closelyas possible) for multilin-
ear monomials can be critically important for the performance of a spatial branch-
and-bound algorithm designed to globally solve nonconvex polynomial optimiza-
tion problems. Because of this, numerous efforts have studied the convex hulls of
sets defined by lower order product terms and the use of these convex hulls in recur-
sively factorized formulations (such as the MINLP standardform defined above).

Four valid inequalities for the three-dimensional setS2 = {w,x1,x2 : w= x1x2,x∈
[xL,xU ]} were proposed by [16], and later [2] showed that these four inequalities
suffice to describe the convex hull. At present most global MINLP solvers that use
general sBB methods (among recent examples see [5], [14], [23]) use the convex
hull for recursively defined instances ofS2 to define the polyhedral relaxations that
are solved at each node of the branch-and-bound tree.

However, it may be thought that limiting solvers to the use ofenvelopes defined
by simple bilinear terms may result in convex approximations for the original prob-
lem that are less strong (perhaps much less so) than those that exploit envelopes
for more complex expressions. For problems involving multilinear multinomials
defined by products of more than two variables, this consideration has motivated
research into the envelopes oftrilinear functions [18, 17]. Comparing the use of
convex envelopes for bilinear and trilinear forms in building convex approximations
for MINLPs motivated the study in [6], and comparisons involving more general
functional forms motivate the present article.

A natural generalization of bi- and tri-linear functions are functions that are
known to havevertex polyhedralconvex envelopes. (The convex envelope of an
n-dimensional functionf (x) is said to be vertex polyhedral if its domainX is a poly-
hedron, and if every extreme point of the convex hull of{(x, f (x) : x∈ X} is defined
by an extreme point ofX itself.) In [19] Meyer and Floudas generalized the ap-
proach developed for trilinear functions to functions withvertex polyhedral convex
envelopes. Essentially, their approaches can be thought ofas enumerative methods
that consider all possible combinations ofn+ 1 extreme points ofX (equivalently,
extreme points of conv({(x, f (x)) : x ∈ X})), and then establish conditions under
which the hyperplane defined by such a set of points defines a linear inequality sat-
isfied by all the other extreme points of conv({(x, f (x)) : x∈X}). Such an inequality
is then valid for{(x, f (x)) : x∈ X} and facet-defining for the convex hull of this set.

General multilinear functions (i.e., any function composed of a sum of products
of variables, in which the degree of each variable in each product is 0 or 1) were
shown to have vertex polyhedral convex envelopes by [21]. Animplication of this
result is that many of the concepts mentioned in the preceding paragraph can be
used for general mutilinear functions; their use is not limited to monomial products
(for example). The extension of such results to define convexenvelopes for multi-
linear functions (and generalizations of them) has been discussed in [26, 28, 29, 30],
among other references.



4 P. Belotti, S. Cafieri, J. Lee, L. Liberti, A. Miller

Empirical testing of the approaches mentioned above (beyond the use of bilin-
ear envelopes defined by [16]) has been limited, but recentlyauthors have begun
exploiting some of these concepts to solve quadratically constrained quadratic pro-
grams, in which sums of bilinear products often figure prominently. In particular,
the authors of [4] discuss how to dynamically generate facets of the convex hull of
the sum of bilinear products in order to define a stronger relaxation of the original
MINLP, and they report that strengthening the formulation with such inequalities
can significantly improve the performance of BARON [23], which by default uses
only McCormick envelopes to exploit multilinear terms in defining convex relax-
ations. Even more recently, [15] provides rigorous bounds for how much the ap-
proach of [23] (and, implicitly, of [26]) can strengthen therelaxations defined by
the use of McCormick envelopes, and also provides numericalresults illustrating
that these bounds are tight.

It is important to note that the bounds defined by [15] apply only to problems that
have sums of bilinear products, but not quadratic terms (i.e., if the quadratic function
in a given constraint is represented byfQ(x) = xTQx, the bounds defined in [15] are
valid for problems in which the diagonal elements ofQ are all 0). Moreover, compu-
tational experience seems to confirm that the smaller the absolute values of elements
on the diagonal ofQ are in comparison to the off-diagonal elements, the more im-
portant the role played by strong convex relaxations for bilinear functions becomes
in defining strong relaxations for the MINLP. (Defining effective relaxations for
nonconvex quadratically constrained problems in which thediagonal elements of
Q are large requires, in addition to the techniques describedin this section, other
methods that are fundamentally different. References thatdiscuss solving noncon-
vex quadratically constrained problems with large diagonal absolute values include
[3, 4, 8, 24, 25], and the references contained therein.)

An unresolved issue that is directly related to much of the research on multilinear
functions described above is the question of whether or not it is possible to define a
description of the convex envelope of multilinear functions that does not require the
explicit a priori enumeration of all of the extreme points ofthe domain. More for-
mally, given ann-dimensional functionf (x) = ∏n

i=1xi over a domainB = [xL,xU ],
is it possible to define a set of criteria that 1) each facet of the convex envelope must
satisfy, and 2) can be checked in time polynomial inn? Most of the approaches
described above, as well as the motivation of this article, are based on the implicit
assumption that the answer to this question is no. However, only a comparatively
small number of research efforts (e.g., [26, 15]) have addressed this question di-
rectly. Moreover, their consideration of this question hasbeen limited to establishing
criteria forxL andxU that are sufficient to guarantee that the answer is yes.

Computational complexity theory, and in particular results of [7] suggests that a
short (i.e., polynomial inn) description of the convex envelopes of multilinear func-
tions can be defined if and only if the following optimizationproblem is polynomial
solvable:
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min
n

∏
i=1

xi −
n

∑
i=1

cixi (1)

s.t. xL
i ≤ xi ≤ xU

i , i = 1, ...,n, (2)

(3)

wherec ∈ Rn is some rational vector. It seems that this problem is likelyto be
NP-complete unless fairly restrictive assumptions onxL andxU are satisfied. For
example, generalizing some of the results of [15], in [20] the authors show that it
is possible to solve the above optimization problem in polynomial time if there ex-
ists a constanta < 1 such thataxL

i = xU
i for i = 1, ...,n. It is also clear that slightly

more general conditions can be established. However, the authors of [20] conjecture
that the above optimization problem inNP-complete in general, and the complex-
ity of this problem remains an important open question in thearea of how best to
approximate the convex envelopes of functions involving multilinear terms.

We will next turn to the general question of when, and how, oneapproach to
defining convex relaxations of factorable functions can be shown to yield relaxations
that are stronger than those generated by another approach.The primary contribu-
tion of this article is to establish a general result concerning this issue. We should
perhaps first note, however, that this contribution does nottell us how much stronger
the dominant formulation will be; this is necessarily an empirical question. More-
over, the comparative ease with which different relaxations can be solved is also a
necessarily empirical criterion, and in general both of these considerations must be
weighed in considering relaxation to use in a given situation.

3 The composition of convex envelopes

In this section we prove that a stronger relaxation is obtained when one replaces
“large terms” with tight convex relaxations instead of breaking up such terms in
sums/products of smaller terms before replacing each smallterm with its respective
convex relaxation. Although we find that this is quite an intuitive result, because
of the inherently recursive nature of factorable functionsand of the fact that we
deal with a recursive symbolic procedure for constructive the convex relaxation, we
did not find it easy to prove this result formally. For this purpose, we use theoret-
ical tools that are well known to the formal languages community but perhaps not
so commonly found in the optimization literature: this is why we detail every step
and attempt to be somewhat didactical in presentation, alternating formal statements
to informal explanations and examples. To the well-versed in such matters, a brief
glimpse to the section might suffice to understand our strategy: assign a special
semantic value (the corresponding convex relaxation) to each operator node of an
expression tree, define the semantics of the composition operator, and finally com-
pare the resulting relaxation with the tight convex relaxation given for the composite
operator at “atomic” level.
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3.1 Alphabets, languages and grammars

An alphabetA is a set of symbols. We letA ∗ be the set of all finite sequences of
elements ofA . A formal languageL is a subset ofA ∗. A languageL is decidable
if, given a strings∈ A ∗, there exists a finite algorithmic procedure that decides
whethers∈ L or not.

Informally, decidability of a language is concerned with its syntax: is a string
a valid element of the language or not? Having decided what a language is, we
have to decide what it says: to every string there corresponds a semantic value,
which, in the theory and language of Zermelo-Fraenkel, is usually a set. In this
setting, our formal language is the set of all valid functions f (x) that can be writ-
ten as finite strings of simbols in infix notation. The semantic values assigned to
f (x) are sets such as{(w,x) ∈ Rn+1 | w = f (x)∧ xL ≤ x ≤ xU} (exact semantics)
and {(w,x) ∈ R

n+1 | w ∈ R( f ,xL,xU)∧ xL ≤ x ≤ xU} (relaxed semantics) where
R( f ,xL,xU) is a convex relaxation of the exact semantics. Since the cardinality of
our language is countably infinite, we cannot explicitly assign exact/relaxed seman-
tics to each function in the language. Instead, we recall that a decidable language
has finite procedure for recognizing strings in the language: for each of the (finitely
many) operations specified by this procedure we define a corresponding operation
on the semantic values involved, thus obtaining a semantic definition for the whole
language.

To this effect, we make use of possibly the best known device for specifying
the syntax of a formal languageL , i.e. a formal grammar. This is a quadruplet
Γ = (Σ,N,P,S) such that:

• Σ ⊆ A is the set ofterminal symbols
• N is a set ofnonterminal symbols(N∩Σ = /0)
• P is a set ofrewriting, orproduction rules(P⊆ (Σ ∪N)∗N(Σ ∪N)∗ → (Σ ∪N)∗)
• S∈ N is thestart symbol.

In practice, one recursively applies the production rules to the start symbol as many
times as possible, generating strings in(Σ ∪N)∗. Those generated strings that are in
Σ∗ are strings of the languageL . If a string inA ∗ is not in the set of all strings in
Σ∗ that the grammar generates, then it is not inL .

Example 1.Consider the alphabet{a,b} and the grammar given byN = {S} where
S is the start symbol,Σ = {a,b} and the production rules〈p1 = aS→ bS, p2 =
Sb→ Sa, p3 = S→ aSSb, p4 = SS→ /0〉. We repeatedly applyp1, . . . , p4 to the start
symbol, obtaining the situation below:



On the composition of convex envelopes for quadrilinear terms 7

S

p3

p3

p3
p3

p3
p4

p4

p4p4

aSSb

ab

p1

p1

p2

p2

bSSb

aSSa

bSSa

bb

aa

ba

other strings

From this, we conclude thataa,ab,ba,bbare in the language specified by the gram-
mar. It must be remarked that formal grammars can also be given for languages
which are not decidable (for example if the recursion does not terminate); this is
one such grammar: the repeated application ofp3 yields longer and longer strings
all involving the nonterminal symbolS. ⊓⊔

3.2 Mathematical expression language: syntax

We now formally define our function language through the use of a formal grammar.
We use an alphabetA = X∪K∪B∪O whereX = {x1, . . . ,xn} is the set of symbols
denoting original variables,K is the set of all computable numbers,B = {‘(’ , ‘)’ }
and O is a finite set of operators{+,−,×,÷,↑,√, log,exp,sin,cos, tan}, where
+,× are binary operators,− can be unary or binary and↑ is the (binary) power
operator. The grammarΓ is defined as follows. The start symbol isF , N = {F},
Σ = A , andP is:

F −→ xi ∈ X (4)

F −→ k∈ K (5)

F −→ (F ) (6)

F −→ (−F ) (7)

F −→ log(F ) (8)

F −→ exp(F ) (9)

F −→ sin(F ) (10)

F −→ cos(F ) (11)

F −→ tan(F ) (12)

F −→ (F −F ) (13)

F −→ (F ÷F ) (14)

F −→ (F ↑ F ) (15)

F −→ (F +F ) (16)

F −→ (F ×F ) (17)

Notice that rules (4)-(5) are given in schematic form: i.e. the string on the left of
the arrow is not in(Σ ∪N)∗, but it is possible to define “sub-languages” that decide
whether a string is inX or in K.

Example 2.In order to recognize that the stringF ≡ x1 + ((x2 ↑ 2) + (x3 × (x4 ×
log(x1)))) is in L we can apply the production rules as follows (there are other
possible orders in which the rules can be applied yielding the same result):
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F −[1]→ (F +F ) by (16)
−[2]→ (F +(F +F )) by (16)
−[3]→ (F +((F ↑ F )+F )) by (15)
−[4]→ (F +((F ↑ F )+ (F ×F ))) by (17)
−[5]→ (F +((F ↑ F )+ (F × (F ×F )))) by (17)
−[6]→ (F +((F ↑ F )+ (F × (F × log(F ))))) by (8)
−[7]→ (x1 +((x2 ↑ F )+ (F × (F × log(F ))))) by (4)
−[8]→ (x1 +((x2 ↑ F )+ (F × (F × log(F ))))) by (4)
−[9]→ (x1 +((x2 ↑ F )+ (x3× (F × log(F ))))) by (4)
−[10]→ (x1 +((x2 ↑ F )+ (x3× (x4× log(F ))))) by (4)
−[11]→ (x1 +((x2 ↑ F )+ (x3× (x4× log(x1))))) by (4)
−[12]→ (x1 +((x2 ↑ 2)+ (x3× (x4× log(x1))))) by (5)
−[13]→ x1 +((x2 ↑ 2)+ (x3× (x4× log(x1)))) by (6).

We need to apply 13 rewriting rules in order to recognize thatF ∈ L . ⊓⊔

3.3 Mathematical expression language: semantics

We are now going to use the formal grammarΓ to assign semantic values to strings.
Informally, we assign different sets to the different occurrences of the symbolF
in each production rule, in such a way that the set assigned toF appearing in the
left hand side of each rule is defined in terms of the sets assigned to the symbolsF
appearing in the right hand side. More precisely, for a production ruleρ in (4)-(17)
of the formF → T, whereT ∈ (Σ ∪N)∗, let ν(ρ) be the number of occurrences
of the symbolF in the stringT. Let X0(ρ) be the set assigned to the symbolF

appearing on the left hand side ofρ, and for alli ∈ {1, . . . ,ν(ρ)} let Xi(ρ) be the
set assigned to thei-th occurrence of the symbolF in T.

3.3.1 Exact semantics

Theexact semanticsof L is defined according to the following rules.
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F −→ xi ∈ X : X0 = [xL
i ,xU

i ]
F −→ k∈ K : X0 = {k}
F −→ (F ) : X0 = X1

F −→ (−F ) : X0 = {(w,x) | w = −x∧x∈ X1}
F −→ log(F ) : X0 = {(w,x) | w = log(x)∧x∈ X1}
F −→ exp(F ) : X0 = {(w,x) | w = exp(x)∧x∈ X1}
F −→ sin(F ) : X0 = {(w,x) | w = sin(x)∧x∈ X1}
F −→ cos(F ) : X0 = {(w,x) | w = cos(x)∧x∈ X1}
F −→ tan(F ) : X0 = {(w,x) | w = tan(x)∧x∈ X1}
F −→ (F −F ) : X0 = {(w,x1,x2) | w = x1−x2∧∀i ∈ {1,2} xi ∈ Xi}
F −→ (F ÷F ) : X0 = {(w,x1,x2) | w = x1/x2∧∀i ∈ {1,2} xi ∈ Xi}
F −→ (F ↑ F ) : X0 = {(w,x1,x2) | w = xx2

1 ∧∀i ∈ {1,2} xi ∈ Xi}
F −→ (F +F ) : X0 = {(w,x1,x2) | w = x1 +x2∧∀i ∈ {1,2} xi ∈ Xi}
F −→ (F ×F ) : X0 = {(w,x1,x2) | w = x1x2∧∀i ∈ {1,2} xi ∈ Xi}

A meta-linguistic note: the naming of the semantic valuesX0,X1,X2 must be local to
each rule. Otherwise, if the same ruleρ is applied twice, we might get two different
definitions assigned to the same nameX0(ρ). In order to obtain a consistent naming,
we observe that the recursive nature of string recognition in L is finite, so the
different strings of(Σ∪N)∗ generated during the recognition procedure can be listed
in the order of rewriting, as in Example 2. For a stringf ∈ L let r( f ) be the length
of this list. For allk ≤ r( f ), we can now letXk

0 be the semantic value assigned to
F appearing in the left hand side of the production ruleρ being applied at thek-th
rewriting step, and letXk

1 , . . . ,Xk
ν(rho) be the sets assigned to the various occurrences

of F in the right hand side ofρ.
As will appear clear in Example 3, some of the semantic sets will be projections

of other semantic sets on some of their coordinates. For every semantic setX we
shall therefore letV (X) be the sequence of variable symbols in terms of whichX is
defined (so thatX ⊆ R|V (X)|), and for allW ⊆ V (X) let π(X,W) be the projection
of X on thew coordinate (ifW = {w}, we writeπ(X,w)).

Example 3.The exact semantics ofF , as defined in Example 2, is derived as follows.

X1
0 = {(w1,w2,w3) | w1 = w2 +w3∧w2 ∈ X1

1 ∧w3 ∈ X1
2}

X2
0 = {(w3,w4,w5) | w3 = w4 +w5∧w4 ∈ X2

1 ∧w5 ∈ X2
2} andX1

2 = π(X2
0 ,w3)

X3
0 = {(w4,w6,w7) | w4 = ww7

6 ∧w6 ∈ X3
1 ∧w7 ∈ X3

2} andX2
1 = π(X3

0 ,w4)

X4
0 = {(w5,w8,w9) | w5 = w8w9∧w8 ∈ X4

1 ∧w9 ∈ X4
2} andX2

2 = π(X4
0 ,w5)

X5
0 = {(w9,w10,w11) | w9 = w10w11∧w10 ∈ X5

1 ∧w11 ∈ X5
2} andX4

2 = π(X5
0 ,w9)

X6
0 = {(w11,w12) | w11 = log(w12)∧w12 ∈ X6

1} andX5
2 = π(X6

0 ,w11)

X7
0 = [xL

1,xU
1 ] andX1

1 = X7
0

X8
0 = [xL

2,xU
2 ] andX3

1 = X8
0

X9
0 = [xL

3,xU
3 ] andX4

1 = X9
0

X10
0 = [xL

4,xU
4 ] andX5

1 = X10
0
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X11
0 = [xL

1,xU
1 ] andX6

1 = X11
0

X12
0 = {2} andX3

2 = X12
0

X13
0 = X1

0 .

Replacing symbols where possible, we obtain a definition of the exact semantics of
our string in function of only six sets and ten variables (4 original variables and 6
added variables):

X1
0 = {(w1,x1,w3) | w1 = x1 +w3∧x1 ∈ [xL

1,xU
1 ]∧w3 ∈ π(X2

0 ,w3)}
X2

0 = {(w3,w4,w5) | w3 = w4 +w5∧w4 ∈ π(X3
0 ,w4)∧w5 ∈ π(X4

0 ,w5)}
X3

0 = {(w4,x2) | w4 = x2
2∧x2 ∈ [xL

2,xU
2 ]}

X4
0 = {(w5,x3,w9) | w5 = w8w9∧x3 ∈ [xL

3,xU
3 ]∧w9 ∈ π(X5

0 ,w9)}
X5

0 = {(w9,x4,w11) | w9 = w10w11∧x4 ∈ [xL
4,xU

4 ]∧w11 ∈ π(X6
0 ,w11)}

X6
0 = {(w11,x1) | w11 = log(x1)∧x1 ∈ [xL

1,xU
1 ]}.

Suppose now we consider an enriched alphabetA ′ with one more 4-ary operator
⊗ such that⊗(x1, . . . ,x4) = x1 + x2

2 + x3x4 log(x1), and an extended grammar with
one more production ruleρ ′ ≡ F −→ F + F ↑ 2+F ×F log(F ). The gener-
ated languageL ’ is identical toL because we showed previously thatL contains
strings as that appearing in the right hand side ofρ ′ even without the production
rule ρ ′. However, using the extended grammar, the stringF can be recognized in
only one step. By replacement of the appropriate variable symbolswℓ, the exact se-
mantics{(w,x) | w = ⊗(x1, . . . ,x4)∧∀i ≤ 4xi ∈ [xL

i ,xU
i ]} of F computed with the

extended grammar is precisely the projection ofX1
0 on the subspace ofR10 spanned

by (w1,x1, . . . ,x4). ⊓⊔

3.3.2 Relaxed semantics

We now define the relaxed semantics ofL . Whereas in the exact semantics we as-
signed to each string the set of values taken by the corresponding function as its
arguments range in the appropriate (recursively defined) sets, the relaxed semantics
assigns to strings convex relaxations of such sets. To this end, we shall describe
an operatorRΓ that computes the convex relaxation of a set using the composi-
tion of production rules inΓ . For each operator⊕ ∈ O, let α (⊕) be its arity (the
number of its arguments). Denoteα (⊕) by ℓ, I the class of all closed and bounded
intervals inR, and letI1, . . . , Iℓ ∈ I; then we use the notationRΓ (⊕, I1, . . . , Iℓ) to
indicate a convex relaxation inRn+1 of the exact semantic value of⊕, i.e. the set
{(w0,w1, . . . ,wℓ) | w0 =⊕(w1, . . . ,wℓ)∧∀i ≤ n (wi ∈ Ii)}. We impose a consistency
(monotonicity) requirement:

∀⊕ ∈ O, I1, . . . , Iℓ,J ∈ I s.t. ∃i ≤ ℓ J ⊆ Ii
RΓ (⊕, I1, . . . , Iℓ) ⊇ RΓ (⊕, I1, . . . , Ii−1,J, Ii+1, . . . , Iℓ)), (18)
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which means that convex relaxations should get tighter whenthe definition intervals
get smaller.

We remark thatR is a symbol in the metalanguage, in the sense that it should
be replaced by an actual description of the convex sets assigned to each operator
(in other words, it stands for the sentence “for all possiblyways of defining convex
relaxations of operators. . . ”). A typical definition ofRΓ used by most sBB solver
codes (e.g. ooOPS [13] and Couenne [5], both based on a grammar very similar to
Γ ) is as follows: for all linear operators,RΓ applied to that operator is the same
as the exact semantics (because, as an affine space defined over a cartesian prod-
uct of intervals, it is convex). The log,exp operators are concave/convex univariate,
and henceRΓ is defined as a convex subset ofR

2 delimited by the function itself
and the secant at the interval endpoints [9]; for piecewise convex/concave functions
we employ the convex envelope defined in [12]; for trigonometric functions it is
easy to work out convex relaxations/envelopes using secants and convex/concave
portions of the functions themselves. We remark that providing convex/concave
relaxations/envelopes of convex/concave functions and piecewise convex/concave
functions suffices to defineRΓ over all univariate monomials of the formxk where
x∈ I ∈ I. For bilinear products, we employ the well-known McCormickenvelopes:

R(×, [wL
1,wU

1 ], [wL
2,wU

2 ]) = {(w0,w1,w2) |
w0 ≥ wL

1w2 +wL
2w1−wL

1wL
2 ∧

w0 ≥ wU
1 w2 +wU

2 w1−wU
1 wU

2 ∧
w0 ≤ wL

1w2 +wU
2 w1−wL

1wU
2 ∧

w0 ≤ wU
1 w2 +wL

2w1−wU
1 wL

2)∧
w1 ∈ [wL

1,wU
1 ]∧w2 ∈ [wL

2,wU
2 ]}.

It is easy to check that the above definition ofR satisfies (18).
Therelaxed semanticsof L is defined according to the rules:

F −→⊕(F , . . . ,F ) : X0 = RΓ (⊕, I1, . . . , Iα (⊕)).

Relaxed semantics can be combined following grammatic production rule compo-
sition in much the same way as exact semantics can, by noticing that whenX is a
convex subset ofRn, the projection ofX on one coordinate axis is always an interval
(because projection preserves convexity).

Now let F be a valid string ofL : thenF is a mathematical expression with, say,
x = (x1, . . . ,xn) as variable symbol arguments corresponding to a certain mathemat-
ical function f : R

n → R. Then we can certainly add the following rule toΓ :

ρ ′ ≡ F −→ F(F , . . . ,F
︸ ︷︷ ︸

n

), (19)

yielding an extended grammarΓ ′, and still obtainL as generated language. The
advantage is thatΓ ′ allows recognition of the stringF in one step, and assignment
of a special relaxed semantics toF (instead of relying on the composition of relaxed
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semantics of substrings ofF through the production rules). This is useful for those
operators which do not appear in the list of production rules, but for which we have
a tight convex relaxation (or a convex envelope).

3.4 Comparison of relaxed semantics

Let F ∈ L represent ann-ary function such thatρ ′, defined as in (19), is not a
production rule ofΓ . DefineA ′ as A ∪ {F} andΓ ′ asΓ with ρ ′ as an added
production rule. Assume that the given relaxed semantics for F in Γ ′ is included in
the computed relaxed semantics forF in Γ (which is usually the case in practice, for
otherwise we would not add the “useless” ruleρ ′ toΓ ′), i.e. that, for allI1, . . . , Iℓ ∈ I,

RΓ ′(F, I1, . . . , Iℓ) ⊆ RΓ (F, I1, . . . , Iℓ). (20)

Theorem 1. For all strings T∈ L that are functions of p variable symbol argu-
ments and for all I1, . . . , Ip ∈ I, we haveRΓ ′(T, I1, . . . , Ip) ⊆ RΓ (T, I1, . . . , Ip).

Proof. If recognition ofT throughΓ ′ never involves ruleρ ′, both grammars yield
the same relaxed semantics. Otherwise, consider thelast time thatρ ′ is used onT:
thenΓ ′ matches a stringF which is an operatorF of n arguments. LetJ1, . . . ,Jℓ

be the relaxed semantics assigned to each of then arguments. Since this the last
time ρ ′ is used, each of theJi (i ≤ n) are the same whether we useΓ or Γ ′, which
means that, by (20),JΓ ′ = RΓ ′(F,J1, . . . ,Jℓ) ⊆ RΓ (F,J1, . . . ,Jℓ) = JΓ . By (18), any
relaxed semantics involvingJΓ ′ will be contained in the same relaxed semantics
with JΓ ′ replaced byJΓ . Thus, if the statement holds from the(k+1)-st to the last
time ruleρ ′ is used, thek-th time ρ ′ is used the argument intervals of the relaxed
semantics inΓ ′ must be contained in the argument intervals of the corresponding
relaxed semantics inΓ .

In particular, we have the following.

Corollary 1. If F (x1,x2,x3) = x1x2x3 and we assign to F the relaxed semantics
given by the trilinear envelopes given in [18, 17], the convex relaxation obtained
throughΓ ′ is at least as tight as that obtained throughΓ for any mathematical
function inL .

Proof. Assumption (20) holds by definition of convex envelope.

4 Computational results

In this section, we computationally evaluate the tightnessof convex relaxations for
quadrilinear monomials obtained combining bilinear and trilinear convex envelopes
in different ways. Specifically, we consider relaxations ofthe following four sets:
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S222 = {(x,w) ∈ R
4×R

3 |xi ∈ [xL
i ,xU

i ]∧ w1 = x1x2,w2 = w1x3,w3 = w2x4},
S̃222 = {(x,w) ∈ R

4×R
3 |xi ∈ [xL

i ,xU
i ]∧ w1 = x1x2,w2 = x3x4,w3 = w1w2},

S32 = {(x,w) ∈ R
4×R

2 |xi ∈ [xL
i ,xU

i ]∧ w1 = x1x2x3,w2 = w1x4},
S23 = {(x,w) ∈ R

4×R
2 |xi ∈ [xL

i ,xU
i ]∧ w1 = x1x2,w2 = w1x3x4}.

In [6] numerical experiments were carried out in order to evaluate the relative
tighteness of the four considered relaxations. The comparison was mainly made in
terms of volume of the corresponding enveloping polytopes (projected ontoR5 to
have comparable results) on a set of randomly generated instances. It showed that
the smallest values of volumes correspond to relaxations involving the composition
of trilinear and bilinar envelopes, and in particular the best results for more than
80% of the considered instances were obtained using relaxation S23. Numerical ex-
periments on some real-life problems were carried out usinga bound evaluation
algorithm, whose purpose is to assess the quality of the proposed alternative bounds
for quadrilinear terms. This “partial sBB” algorithm at each branching step only
records the most promising node and discards the other, thusexploring a single
branch up to a leaf. The best bounds were obtained using a relaxation involving a
trilinear envelope.

In the present paper, we further investigate the strenght ofthe proposed relax-
ations in a sBB algorithm. To that effect, we implemented thecomputation of the
four relaxations for quadrilinear monomials inCOUENNE [5]. Computational exper-
iments were carried out runningCOUENNE on 7 instances of the Molecular Distance
Geometry Problem (MDGP) [11], the problem of finding an embeddingx : V → R3

of the verticesV of a weighted graphG = (V,E) such that all the edge weightsduv

(for {u,v} ∈ E) are equal to the Euclidean distances‖xu−xv‖. The MDGP mathe-
matical programming formulation is:

min
x ∑

{u,v}∈E

(
‖xu−xv‖2−d2

uv

)2
, (21)

a nonconvex NLP involving polynomials of fourth degree. In our experiments we
impose a time limit equal to 4 hours. Results were obtained ona 2.4 GHz Intel Xeon
CPU of a computer with 8GB RAM shared by three other similar CPU running
Linux. For the smallest MDGP instance, the optimal solutionis computed within
the time limit using all the considered relaxations. A comparison of CPU time is
reported in Table 1 and shows that the time needed to solve theproblem when relax-
ationS23 is used is 81% smaller than the time needed usingS222, that is the second
best time to solve the problem. For the other instances, for which the optimal solu-
tion is not reached within the time limit, we compare the (lower) bounds obtained
with the four relaxations. Results are shown in Table 2. These results confirm the
results obtained in [6]. It appears that the best bounds are always obtained using a
relaxation involving a trilinear envelope and, in 5 cases out of 6, correspond to re-
laxationS23. The sBB based on this relaxation gives bounds which are significantly
better than the ones obtained using a relaxation based on thecomposition of bilinear
envelopes, in particular on the largest instances. For the first instance in Table 2 the
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optimal solution is found with relaxationsS222 andS23 within the time limit. It took
8311.97 seconds in the first case and 7063.73 seconds in the second one.

Instance S222 S̃222 S32 S23

lavor3 311.934372.306475.83558.0872

Table 1 Comparison of CPU time (seconds) obtained by runningcouenne with relaxationsS222,
S̃222, S32, S23 on the smallest MDGP instance. The best value is reported in bold face. Solutions
were obtained on a 2.4 GHz Intel Xeon CPU of a computer with 8GBRAM shared by three other
similar CPU running Linux.

Instance S222 S̃222 S32 S23

lavor5 228.574(∗) 199.864 200.45 228.574(∗)

lavor6 93.4905 135.899 84.9467 144.399
lavor7 2.75184 90.3962 70.9786 207.255
lavor8 24.5401 95.0223 36.421 334.968
lavor10 -266.843 -105.584-91.4539 93.6579
lavor20 -1571.58 -1215.7 -589.636 -1146.5

Table 2 Comparison of lower bounds obtained by runningcouenne with relaxationsS222, S̃222,
S32, S23 on MDGP instances. Bounds were obtained within a 4h time limit. The best values are
reported in bold face. The symbol (*) denotes optimal solutions found. Solutions were obtained
on a 2.4 GHz Intel Xeon CPU of a computer with 8GB RAM shared by three other similar CPU
running Linux.

5 Conclusion

We analyzed four different convex relaxations for quadrilinear monomials, obtained
by the composition of the known convex envelopes for bilinear and trilinear mono-
mials. Starting from theoretical as well as computational results given in [6], we
further investigated these relaxations. We provided an alternative proof of the fact
that a relaxation ofk-linear terms that employs a successive use of relaxing bilinear
terms (via the bilinear convex envelope) can be improved by employing instead a re-
laxation of a trilinear term (via the trilinear convex envelope). We computationally
evaluated the impact of the tightened convex relaxations ina spatial Branch-and-
Bound algorithm on a set of instances of a real-life problem.
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