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Abstract 

Network engineers and designers need additional tools to generate network traffic in order to test and evaluate 

application performances or network provisioning for instance. In such a context, traffic characteristics are the 

very important part of the work. Indeed, it is quite easy to generate traffic but it is more difficult to produce 

traffic which can exhibit real characteristics such as the ones you can observe in the Internet. With the lack of 

adequate tools to generate data flows with “realistic behaviors” at the network or transport level, we needed to 

develop our tool entitled “SourcesOnOff”. The emphasis of this article is on presenting this tool, how we 

implemented it and which methodology it follows to produce traffic with realistic characteristics. To do so, we 

chose to consider different stochastic processes in order to model the complexity of the different original traffics 

we wanted to replay. In our approach, we are able to consider several statistical laws and to combine their effects 

to model accurately the original behavior we analyzed in the real data. We then select the right parameters to 

consider as inputs for our SourcesOnOff tool. This approach gives really good traffic characteristics and, 

consequently, the generated traffic is really closed to reality as results presented at this end of this paper 

demonstrate it.  
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1. Introduction 

Network engineers and designers need additional tools to generate network traffic in order to test and evaluate 

application performances or network provisioning for instance. In such a context, traffic characteristics are the 

very important part of the work. Indeed, it is quite easy to generate traffic but it is more difficult to produce 

traffic which can exhibit real characteristics such as the ones you can observe in the Internet.  

With the lack of adequate tools to generate data flows with “realistic behaviors” at the network or transport level, 

we needed to develop our tool entitled “SourcesOnOff ”. In this paper, “realistic behavior” means to generate 

traffic similar to the traffic a network administrator can capture on his network backbone, end-systems, etc... 

Previous research conducts us to design new methodologies and tools to generate network data traffic as close as 

possible to what we can find on Local Area Networks (LAN) and on the Internet. It can be necessary for instance 

to evaluate performances of new network entities (such as an embedded router (Varet et al., 2012)). In this 

specific context, we needed to face this router to generated traffic with characteristics as close as possible as the 

Internet traffic. However, depending on what you mean by “Internet network” and where you perform the study, 

measurements may completely differ: Internet cannot be solely characterized with a small set of parameters such 

as some mathematical distributions and additional factors. Indeed, there is not currently one unique mathematical 

modeling able to embrace the different characteristics and the complexity of the Internet traffic (Olivier & 

Benameur, 2000). Anyway, Internet traffics hopefully show some common properties and trends (detailed in the 

next paragraph) that helps to its modeling. 

For instance, an Internet Service Provider (ISP) providing access for software engineering companies manage a 

different profile of data communications than an ISP for private individuals (Gebert et al., 2011). However, there 

are some common characteristics between both profiles. The goal of the tool we have developed is to handle 

most of Internet traffic profiles and to generate traffic flows by following these different Internet traffic 

properties. 

The rest of this paper is structured as the following. The first section presents the mathematical model this tool is 

based on for traffic generation: the ON/OFF sources. We chose to consider different stochastic processes in order 

to model the complexity of the original traffic we want to replay. General approaches consider only one law for 

the On process and another law for the Off process. In our approach, we are able to consider several laws and to 



combine their effects to model accurately the original behavior we analyzed in the real data. We then select the 

right parameters to consider as inputs for our SourcesOnOff tool. This approach gives really good traffic 

characteristics and, consequently, the generated traffic is really closed to reality as results presented at this end of 

this paper demonstrate it. In the second section, we present why the other tools currently available were not 

usable in our case. The third section describes how our tool works plus some specific points the user should 

know about its implementation. The fourth section is dedicated to the validation of our tool with different 

methods in order to conclude if the generated traffic has the same properties than the original one. We have, in 

particular, investigated the traffic characteristics generated by our software and we demonstrate that it is able to 

generate network traffic with realistic properties such as these we can capture on the Internet. Different 

parameters have been considered to match generated traffic characteristics with the original traffic. First, we 

considered classical traffic parameters such as throughput, delay or losses but we have also investigated more 

advanced statistical parameters such as the correlation level of generated packets or their long range dependence 

(by computing the Hurst factor). 

1.1 How to characterize an “Internet-like” profile? 

Different studies were published with results related to Internet-like traffic characterization: the word “Internet” 

can cover very different profiles, but some common trends can be highlighted. Thus, we will examine two of 

them: high variability and self-similarity, respectively called the Noah and Joseph Effects. 

High variability is characterized by an infinite mathematical variance and means that sudden discontinuous 

changes can always occur. Some mathematical distributions like Pareto and Weibull are heavy-tailed (i.e. the tail 

of the distribution is not exponentially bounded) and thus can be used to generate sets of values with high 

variances and also high-variability. 

Different studies have shown that classical distributions such as the Gaussian and the Poisson distribution have 

failed to reproduce a LAN-like throughput (Leland et al., 1994) (Olivier & Benameur, 2000). One of them 

(Olivier & Benameur, 2000) proposes to use Pareto’s and Weibull’s heavy-tailed distributions and proved that the 

generated traffic shows properties closer to real network traffic characteristics than other mathematical 

distributions. 

Self-similarity is defined by a long-range dependence characteristic, which means there are bursts of traffic any 

time over a wide range of time scales. In other words, a small sub-range of values is “similar” to the whole range 

of values. W. Willinger found in (Willinger et al., 1997) a relation between self-similarity and high variability for 

Ethernet Local Area Network (LAN) throughputs: in particular, he showed that the Noah and the Joseph effects 

are linked with a degree-1 polynomial relation. In other words, using ON/OFF sources with heavy-tailed 

distributions causes the traffic streams to be highly variable and, consequently, the aggregation of these streams 

to be also self-similar and highly variable. 

1.2 ON/OFF sources to generate realistic throughputs 

W. Willinger proposed in (Willinger et al., 1997) to generate data following packet-train models, i.e. with strictly 

alternating, independent and identically distributed ON- and OFF-periods and proved that these ON/OFF 

sources generate data similar to experimental measurements on real networks. 

A source corresponds to one network flow. The flow is associated with a source and destination couple and also 

with data, transmitted as a set of packets called a train of packets. In our case, we use the transport protocols TCP 

and UDP. The data stream is thus exchanged as a set of IP packets. The source is associated to a departure time 

and a duration time. 

The departure time of any source is computed with the departure time of the preceding source plus a random 

duration. This randomness follows the user-defined “Doff distribution” (also named “distribution of inter-train 

durations”). The first source starts at the beginning of the process. 

Duration times should be similar for all sources. They should follow a user-defined random distribution called 

“Don distribution” (also named “distribution of train duration” or “distribution of flow duration”). This Don 

distribution is independent of the Doff distribution. 

For feasibility constraints and to reduce the complexity of implementation, we use the Don distribution to 

generate random values, not for time duration in seconds but for quantity of transmission in bytes. Because of 

TCP congestion control mechanisms, source durations are correlated with quantities of transmitted data. 

We can summarize the ON-OFF source generation algorithm we use in our tool by: 

For n from 1 to infinite do: 



1.   /* start a new source here */ 

2.   Don_value := get a random value of distribution Don; 

3.   Doff_value := get a random value of distribution Doff; 

4.   Wait for the duration Doff_value 

5.   Start the transmission of Don_value bytes to a remote host (do not wait the end to perform the next iteration, 

loop as soon as data are sent into the transmission buffer) 

End_For 

Algorithm 1: Traffic generation with ON/OFF sources 

In algorithm 1, the Don_value is the length (in bytes or multiples of bytes) of each data flow, also called a “train”. 

This train is exchanged between the local (transmitter) system and a remote (receiver) system. The Doff_value 

(in seconds or more often in milliseconds) is a duration called the inter-train distance (i.t.d). This i.t.d. represents 

the time between two consecutive flow creations. The Doff_values and the Don_values are completely 

independent. They are issued from random number generators, which follow respectively the “Don” and the 

“Doff” distributions. These distributions should be heavy-tailed to ensure the self-similarity of the generated data 

throughput (Willinger et al., 1997). Distribution parameters are defined by the user on the command-line. 

For example, if we have the following sequence of sources <A, B, C, …> and if Doff values, randomly 

generated, begin with the sequence <A.Doff=3, B.Doff=3, C.Doff=5, …> and Don values with <A.Don=10, 

B.Don=3, C.Don=4, …>, then figure 1 illustrates which throughput we can expect on the network. 

Internet flows are mainly TCP and UDP flows. From an application point-of-view, the TCP protocol uses 

congestion avoidance mechanisms and then spreads the data transmission out in time: the stream is divided into 

segments and each segment is sent when the previous segment has been correctly received. Flow durations 

depend of many unpredictable factors in real systems where other flows share the same resources. Moreover, the 

UDP protocol divides the data into multiple datagrams and sends all datagrams as fast as the lower layers can, 

with possible losses. The proportion of TCP vs. UDP is a parameter of the Internet profile. 

 

Figure 1: Emission process of ON/OFF traffic sources 

2. State of the art of traffic generators 

2.1 Network simulators 

Different tools are available to simulate networks and their behaviors, with integrated ON/OFF sources. We can 

cite, for instance, NS-2 (NS-2, 2013), OpNet (OpNet, 2013) or OmNet++ (OmNet++, 2013). 

Most of them provide “Internet-like” flow generators, some of them based on ON/OFF source generation 

processes. However, the aim of our research work was to face new network systems to real traffic. It means we 



wanted to perform our system evaluation in real time and do not want to evaluate a model of our system. 

Simulators cannot do this kind of real time experiments, only emulators can do it. However, it is complex to deal 

with most network emulators as they are complex to install, to configure with the real network environment, and 

consume as well many CPU resources. This is why we searched for and studied tools not to simulate or emulate 

but to generate a realistic traffic load on real networks. 

2.2 Traffic replay tools 

Some software enables the user to replay previously captured network traffics. This is done in two steps. Firstly, 

the user captures data on the networks he wants to reproduce. This can be done with tools called “sniffers” such 

as the reference tool Wireshark (Wireshark, 2013) and its background application “dumpcap” (Dumpcap, 2013), 

a command-line tool called up internally by Wireshark. Secondly, he needs to replay the captured traces, i.e. by 

retransmitting the sniffed packets in the same order, and separated with the same delays as these measured 

during the capture (cf. the “tcpreplay” (note 1) tool for instance). Harpoon (note 2) is another existing Open 

Source flow-level traffic generator, but this tool requires the user to define flow per flow the data weight he 

wants to transmit on the network. The automatic generation of the network profile is limited to constant and 

uniform distributions. Moreover, Harpoon seems to be not maintained since 2005. This is why we did not 

consider this tool for our experiments. 

This traffic replay process has different advantages. The two steps may be done independently by two different 

users and at any time (as long as the first step is started before the second one). The capture may be filtered 

before being replayed. Replay parameters may be set up: for example traffic replay may be faster or slower than 

the capture speed, it may be altered with random losses or random transformations… 

However, replaying has also important drawbacks. Indeed, before replaying any network trace, the user must 

make or acquire the capture he wants to replay. Most of the time, this is a difficult task: user privacy issues 

restrain the administrators in allowing captures on the router they administer; often ISPs do not want to extract 

advanced statistics from their networks… The public data we have found on Internet are often so anonymized 

that they not longer contain the useful information we need to replay them. Moreover, if you continuously replay 

the same trace you will reproduce periodically the same “events” (throughput bursts, specific packet sequences 

or behaviors…). This periodicity might falsify some statistical analysis and deceive network systems. For 

instance, this type of traffic replay cannot be efficient if you want to assess performances of network 

mechanisms such as transport protocols given its objective is to act on traffic profile and by definition this traffic 

replay do not give any freedom to transport protocols to optimize traffic exchanges (such as congestion control 

mechanisms for instance). 

2.3 Network throughput estimation tools 

This is why different techniques and tools have been elaborated to load a network and evaluate its capacity. One 

of the existing tools we have studied is “iperf” (Iperf, 2013). It can generate TCP or UDP flows to load the 

network. In TCP mode, an iperf client transmits to the server an infinite quantity of data through one TCP flow. 

After a user-defined duration, the iperf tool aborts the TCP connection and prints on the screen different statistics 

and the total quantity of data it succeeded in transmitting correctly. 

A network capture shows often that mostly all the network resources are used by the TCP flows (Gebert et al., 

2011). On one hand, the TCP protocol efficiently exploits the network and transmits data in an optimal time span. 

However, in LAN captures, external and unexpected events interact with the flow, they generate segment delays 

and losses impacting the TCP connection which becomes longer than the optimal time span expected. This 

drawback affects most of methodologies based on studies using only one TCP flow. We can cite, for example, 

when the tester uses an SSH or an FTP connection to transmit a big file and consequently to artificially load the 

network. 

Figure 2c illustrates such a measure of throughput with iperf generating a TCP flow. We can see, from a first 

qualitative point of view, that the throughput generated by iperf is nearly constant and predictable, contrary to the 

throughput of an Internet capture (in figure 2a) and the throughput generated by our tool Sourceonoff (in figure 

2b). 

Iperf may be configured to transfer multiple TCP streams; in this case the program starts the different flows 

simultaneously at the beginning of the program. This behavior is not realistic: resources are shared fairly from 

the beginning, whereas in Internet later flows are penalized at their start by the flows already established. 

Moreover, this tool “iperf” performs measurements on “long” TCP connections (about 10 second duration by 

default); this allows the TCP congestion control mechanism to adjust the data throughput efficiently. However, in 



most of ISP studies the TCP connections are very numerous and the majority is short (for instance, 81% of TCP 

connections carry less than 310 bytes, in study (Iperf, 2013)). Consequently, congestion control mechanisms do 

not have the time to optimize the connection. 

In UDP mode, the client transmits data periodically: the period is computed depending on the user-defined 

quantity of data per second to transmit. However, for the same reason than previously, a single flow with 

constant throughput is not realistic (Gebert et al., 2011) (Olivier & Benameur, 2000). 

Consequently, we have searched for other tools to generate data throughput: BWPing (BWPing, 2013), Ttcp 

(Ttcp, 2010), NetPerf (NetPerf, 2013), NetPerfMeter (Dreibholz, 2011), Ostinato (note 3)… All differ more or 

less on the set of supported protocols, on the maximum admissible throughputs and on the statistics printed on 

the screen for the user. However, all have the same drawbacks as explained above. 

This is why, in the rest of this article, we chose the tool “iperf” as a comparison reference for our SourcesOnOff 

tool, because most measurement tools are based on the same assumptions and work in a similar manner: one or 

multiple identical and simultaneous TCP and UDP flows in order to load the network at its maximum available 

capacity. 

 

Figure 2: Throughputs generated by iperf and our tool 

3. The SourcesOnOff tool  

We did not find in the state of the art we performed any tool to generate data flows based on exact ON/OFF 

sources. This is why we developed this one in C language and validated it with the Debian Operating System. 

The tool we propose is free and Open Source, under the General Public License v3 (GPLv3 (GPL, 2013)). 

Source code can be downloaded at http://www.recherche.enac.fr/~avaret/sourcesonoff.  



Initially developed for Debian-based systems, the 10 source files with 3,000 lines of code are compiled with the 

GNU C Compiler (gcc, with GCC (GCC, 2013)) and with the pedantic option. It is not POSIX-compatible 

because we use intensively the (long long) 64 bit-integer type and the (long double) float type for mathematical 

computations. Moreover, the tool uses certain Linux-specific functions (e.g. the epoll() system call) and so it 

should not be easily portable on non-Linux based systems, such as Microsoft Windows® or Mac OSX®. This 

software is linked with the real-time (-lrt) and the mathematical (-lm) libraries. The binary is between 84kB (32 

bit version) and 111kB (64 bit version). 

 

Figure 3: SourcesOnOff software design (grey box view) 

The source code is divided into 3 different tasks represented in figure 3: the random value generation task, the 

network flow generation task and a third task to link the two previous together (common declarations and 

structures, command-line parsing…). 

3.1 Generation of the random values 

ON/OFF sources are based on the generation of random values following well-determined distributions. The 

following distributions are currently implemented in the program. The Uniform distribution is based on the 

drand48() and the random() Linux functions, with corrections to ensure an exact uniformity on any range. The 

Normal/Gaussian distribution is computed with the help of the Box-Muller transformation. We use the Knuth’s 

algorithm for the Poisson distribution. The Pareto, Weibull and Exponential distributions use internally a 

transformation on the uniform distribution. The generation process of all these distributions have been 

statistically validated with the R statistical software (R, 2013) and its comparison function qqplot(). 

Multiplying factors enables users to convert the randomly generated values into Bytes (for Don distributions), 

nanoseconds (for Doff distributions) and their multiples (kB, MB, GB, us, ms, s…). Distributions may be 

bounded by minimum and maximum user-defined values. For instance, the program may be limited to 1 GB per 

flow in order to avoid any traffic generation problems. It can be useful to set up heavy-tailed distributions. 

Indeed, most of them produce very high values such as 1e+44, but it is often problematic in practice: we cannot 

transmit a flow of 1e+44 bytes in our networks.  

Our tool enforces user-defined minimum and maximum values for the generated random numbers, by increasing 

values lower than the minimum boundary and decreasing values greater than the maximum boundary. 

An additional pseudo-distribution is available: the Constant distribution. In this case, all generated values are 

equal to a user-defined constant. This method enables the user to generate a more predicting behavior. For 

example, if the user calls the program for UDP flows with a Don distribution constant to 1kB and with a Doff 

distribution constant to 1 ms, the program will send each millisecond a datagram with 1024 bytes of data (note 

that this behavior is similar to iperf behavior in UDP mode). 

A parameter called “turn number” enables the user to limit the number of flows: the program will start “turn” 

flows then wait for termination of all flows and quit. The default turn number is one million flows, in order to 

continuously create new flows for an time long enough (depending on the Doff values) to conclude most of our 



experiments. The special values of 1 flow for the turn parameter and a Don distribution constant to 1 GB is 

similar to transferring 1 gigabyte of random data through one TCP connection. In most cases, this overloads the 

network capacity of the path until all the data are transmitted. 

3.2 Generation of the network flows 

First of all, different sets of Don and Doff random values are generated. They are then used for data 

communications. Command-line parameters specify, for each set of (Don; Doff) values, the different socket 

properties: are they transmitters and so who is the destination host? Or is it a bottomless pit? Do we use UDP or 

TCP protocol? What is the port number to use? Does IPv4 or IPv6 be used with? Does a set of sources be 

delayed before starting (to let another set of sources take some advance)? Does the set of sources be stopped 

after a delay, even if there are still active sources? How many maximum sources should be created? Does the 

random generator be initialized with a specific seed (i.e. to reproduce two exact source generations)? 

All these parameters enable the user to refine the tool behavior. Different sets of sources may run simultaneously, 

each set is associated with independent Don and Doff distributions and parameters. For instance, a set of sources 

may be defined to load the network with TCP streams and another set to generate UDP datagrams. The process 

forks itself to provide TCP and UDP data simultaneously. Each task uses the epoll() primitive to perform the 

management of thousand of flows if necessary. This primitive reduces the portability of the software to only 

Linux systems and should be replaced with the POSIX-compatible select() primitive in a future tool release. 

Contrary to programs like iperf, this tool is only intended to generate data. It was not developed to provide itself 

advanced statistics on the network: we use our tool to generate background traffic and additional passive and 

active measurement tools to evaluate network performances and collect statistics (note 4).  

3.3 Statistic profile extraction from a real traffic trace 

Before experimenting traffic generation, we have to define what kind of traffic we want to generate. This step 

may be done arbitrarily by choosing appropriate values or by selecting values from existing studies like (Gebert 

et al., 2011) (Olivier & Benameur, 2000). 

We chose an alternative solution: given that we belong to a research entity, we have easily access to real data. 

Thus, we asked to our local network administrator to capture the entire incoming and outgoing traffic, generated 

by people from the university (students, administrative people, teachers and researchers) on our local area 

network. The data were captured on the firewall protecting the access link between our LAN and other networks: 

REMIP (REMIP, 2013) and RENATER (RENATER, 2013). REMIP and RENATER networks are our links to the 

Internet. Thus, we captured all data from our LAN to Internet and all associated responses. 

We captured a set of 9 millions of IPv4 packets, mostly TCP data (97.7% of TCP, 2.2% of UDP and 0.1% of 

ICMP), during 10 hours between 8:00AM and 6:00PM, Tuesday the 29th of January, 2013. We expected to 

generate simultaneously TCP sources and UDP sources with our tool SourcesOnOff. However, UDP datagrams 

are negligible in our case (less than 2.5% of our traffic in packet numbers, less than 0.5% of our traffic in bytes), 

so we replayed only TCP sources. We will finally just model and reproduce the TCP traffic in our study case 

(section 4 will explain it). 

We used the tool tcpdump (Tcpdump, 2013) to capture the raw packets and then the tool ipsumdump 

(IPsumDump, 2013) to ensure the anonymity. We finally conducted a complete statistical analysis with bash and 

R scripts. These tools enabled us to retrieve different statistical characteristics of the captured data. This process 

is detailed in the next subsection. 

3.3.1 Statistic profile extraction process 

Previous research work (such as (Gebert et al., 2011) (Olivier & Benameur, 2000) (Leland et al., 1997) 

(Willinger et al., 1994) for instance) have demonstrated that one unique statistical law cannot figure out all the 

complexity of an original Internet traffic trace. This is why we chose to decompose and to model the Internet 

traffic trace we want to replay by using several different statistical laws. Thus, we need, firstly, a decomposition 

algorithm and, secondly, a distance criterion to evaluate the differences between real original data and data 

generated by our tool. This distance criterion will help us to select the best statistic laws to decompose original 

data. These two parts of the process are detailed in the two next subsections. 

3.3.2 Traffic trace decomposition 

We developed an algorithm able to detect a lack of continuity in any data we want to characterize. This algorithm 

is mainly based on the quantmod tool developed by Jeffrey A. Ryan (note 5). We explain the detection results on 

the example provided by figure 4. The top part of the figure represents the original data (before applying our 



decomposition algorithm) and the bottom part of the figure represents the decomposed data. On the left side, we 

represent the ECDF of the data and on the right side we compare the original data to a specific statistic profile 

(we chose to show only the Weibull function comparison in this figure) thanks to QQPlot diagrams (Becker et al., 

1998). We can note that before decomposition the statistic profile does not fit the whole set of data (cf. the top 

QQPlot diagram where a linear tendency cannot be seen).  

Indeed, for this trace profile, a Dirac distribution creates, at its origin, a discontinuity in the original data. By 

using our detection algorithm we are able to generate the same original statistical process by considering two 

statistical sub processes. The first one is the Dirac function that creates this discontinuity and the second one is 

the relevant function that fits the data without the Dirac function’s events. 

Thus, in the bottom part of figure 4, we consider finally a Weibull distribution for the remaining data and the 

reader can note that it perfectly fits its statistic profile (cf. the bottom QQPlot diagram where a linear tendency 

can be seen).  

To characterize this resulting process of the remaining data, we generated distributions of different types 

(Weibull, Pareto, Exponential, Gaussian…) and with different parameters. For instance, the script we wrote to 

optimize Weibull shape parameter tests all Weibull values between 0.01 and 10.00 with a step of 0.01. For each 

of the 10.000 candidate values, we measured the distance between the network trace values and an equivalent 

number of values following the Weibull distribution with the candidate shape. We then select the shape value 

with the minimum distance, in the 10.000 computed correlations.  

It is now mandatory to explain how this distance assessment is computed. For this purpose, we used the 

Bayesian Information Criterion which is introduced in the next subsection. We are thus capable of combining the 

different values of the traffic to generate by considering in the SourcesOnOff tool those different distributions. 

 

Figure 4: Example of traffic decomposition (ECDF [left] and QQPlot [right] functions for real data [top] and 

Weibull distribution [bottom]) 

3.3.3 BIC (Bayesian Information Criterion) distance assessment 

The next step of the generation process is to quantify the statistical distance that exists between our original data 

and the data generated by our tool. To compute this distance we introduce the Bayesian Information Criterion 

(Schwarz & Gideon, 1978). This criterion is computed as BIC = k * ln(n) – 2 * ln(L), where: 

- n is the size of analyzed data; 

- L is the likelihood of the model (Weibull, Pareto, Exponential…) regarding the different original data; 

- k is the total number of estimated parameters. 

The final goal of this comparison is to select the smallest BIC (minimum BIC value is -∞) according to the 



different candidate statistic profile (Weibull, Pareto, Exponential, Gaussian…). Thus, the tool can conclude that 

the selected model (which might be a composition of different distributions) is the closest from the original data. 

4. Validation of the SourceOnOff tool 

The objective of this section is to validate the traffic profile generated by our tool. We could have presented 

complex and realistic topologies, but the different experiments we performed have not given interesting results 

and network behaviors. Moreover, the goal of this section is to analyze deeply the traffic generation process 

provided by our tool. By introducing additional complex topologies, the statistical analysis of the generated 

traffic would have been more complex given that we would have had difficulties to link a parameter variation 

with a specific cause: our tool or the complex topology. This is why we chose a simplified experimental topology 

with only two hosts and one router, as presented in figure 5. The SourcesOnOff tool has been deployed on the 

different hosts: the sender part on the transmitter host and the receiver part on the receiver host. 

 

Figure 5: Experimental network topology 

4.1 Tool deployment 

This subsection details the deployment of an expected traffic profile on the different end-systems. For this 

experiment, we use two Linux Debian network hosts called H1 and H2, running on a mono-core 1.2 GHz with 1 

GB of RAM. They are connected to a router RT running a quad-core Intel processor @3.8 GHz with 4 GB of 

RAM. The links between hosts are Ethernet RJ45 connections manually configured to 10baseTx-HD, in order to 

easily limit the link capacities without any software solution and thus to capture all the traffic without any loss. 

The experimental network topology has been already presented in figure 5. H1 runs the sender part of our tool 

and H2 runs the receiver part. 

After the beginning of the generation, the traffic profile tends quickly to a permanent and stable mode. At this 

moment, the processor consumption reported by system monitoring tools such as top & htop is around 5% CPU 

time on the transmitter H1 and 10% on the receiver H2. The virtual memory allocated by the Linux Operating 

System for the tool is between 2 and 16MB on our hosts, depending on the number of sources we wants to start 

(16 MB when infinite number of sources). These measures remain stable until the program automatically 

finished or was stopped by the user. 

We captured different network traces: between 10 minutes and 10 hours. We will describe in the next subsections 

only one of them, because other captures concluded to the same results. The following subsections will analyze 

the captured data on the router during one hour, searching for the properties which characterize an Internet-like 

traffic profile. 

4.2 Verification of generated traffic correctness 

The validation of our tool needs to analyze its generated traffic. This is why this section analyzes the original 

captured traffic and explains how generated traffic is really close to the original network traffic. Thus, we 

performed different quantitative and qualitative verifications on the generated traffic to answer the following 

questions: are the requested parameters for the Don and Doff distributions correctly applied by the tool, are the 

random values conforms to the “original” real capture, and finally, is the generated traffic conform to the original 

one? 

4.2.1 Statistic profile detection 

By applying the algorithm described in section 3.3, the tool is able to detect several different statistic profiles in 

the same original data as described in the Figure 6. The left side describes the Don process. We can graphically 

see that both original and generated distributions are well fitted by the Weibull function (the “generated” black 

curve fits perfectly the “original” red one). For the Doff distribution it is a more complex process that we have 

modeled based on the function composition algorithm. Indeed, it chose a Weibull function plus a Dirac function 

(as plotted by the black curve). In the following sub section, we are going to validate how this function 



composition fits very well the original statistical process. 

 

Figure 6: Fitting of original (red curve) and generated (black curve) traffic distributions (left side Don and right 

side Doff distributions) 

4.2.2 Qualitative analysis 

Quantile-quantile plots 

As qualitative estimators, we used quantile-quantile plots diagrams (Becker et al., 1978)  (also called 

“QQPlots”) to represent on the same diagram the measured values on the real network (i.e. the original data) and 

the measured values on the experimental network (i.e. the SourcesOnOff generated data). 

QQPlot diagrams sort independently X and Y values, and then represent points to the sorted coordinates. When 

the X and Y series are correlated, a linear tendency is visible on the diagram. On our QQPlot diagrams, we will 

represent a diagonal blue line of equation y=x, in order to represent a perfect correlation between x and y values. 

Firstly, we studied the Doff values, i.e. the inter-train durations. The set of values used for the X data is the set of 

durations between two consecutive TCP connections observed in the capture in the real network. The set of 

values used for the Y data is the set of durations between two consecutive TCP connections measured in the 

traffic generated by our tool SourcesOnOff. In other words, the Y values are the durations our tool waited 

between starting two TCP connections. 

We can see on figure 7 that the values are very well correlated: most of the 9,700 points drawn on this figure are 

near the diagonal blue line of equation y=x. This means most values measured in the real network were 

successfully reproduced in our experimental network. The correlation factor is 99.8% in our case for Doff values. 

A few points with high values are not well correlated: they come from the tail of the Weibull distribution 

densities. 

Secondly, we performed the same analysis with the Don values, i.e. the measurement of TCP connection 

durations (exchanged bytes between the different hosts). Figure 8 shows the QQPlot diagram. Observed values 

are well correlated with expected values. The correlation factor is 97.9% in our case for Don values. 

We can conclude that our tool shows very good trends for the generated traffic compared to the original one. 

However, it is necessary to analyze more accurately how the generated traffic is close to original. This is why 

autocorrelation function is described in the next subsection. 

 



 

Figure 7: QQPlot for Doff values (real traffic vs. generated traffic) 

Autocorrelation checking 

We computed the autocorrelation on the throughput generated by our tool SourcesOnOff. We compared this 

autocorrelation function with the autocorrelation on the Internet throughput we captured on our real network. 

Each time, we computed the autocorrelation with a maximum lag of 15,000 values. 

We can see on figure 9 that autocorrelation functions show both heavy tails: when the degree of correlation 

increases, the value of autocorrelation stays around 0 but does not converge to 0. Instead, the autocorrelation 

oscillates around 0 with bursts upper the limit of 5% materialized by the blue dotted lines. This is a qualitative 

proof of the long-term memory feature on the measures. However, we use additional tools (BIC distance and 

Hurst factor) to check quantitatively these results in the following section. 

 

Figure 8: QQPlot for Don values (real traffic vs. generated traffic) 

4.2.3 Quantitative analysis 

BIC distance 

Table 1 shows BIC distance analysis. We can note that original and generated traffics are the closest when the 

statistic model combines both Weibull and Dirac profiles. The qualitative similarity between original and 

generated traffics provided by QQPlot is thus confirmed by BIC distance computations for both Don and Doff 

profiles. This result validates that a combination of both Weibull and Dirac distributions is the right statistical 



profile to consider with our original data. 

Table 1: BIC distance between original and generated traffic 

Statistic model Doff BIC distance Don BIC distance 

Weibull (+ Dirac) 0.01558 0.02527 

Pareto (+ Dirac) 0.0209 0.03834 

Exponential (+ Dirac) 0.08892 0.06222 

Gaussian (+ Dirac) 0.1027 0.07535 

Hurst exponent computation 

We wanted also to compute quantitatively the long-term memory of the generated traffic compared to the 

original one. This can be showed with the Hurst exponent computation: this value is an indicator of long-term 

memory. 

 

Figure 9: Generated (top) vs. real (bottom) throughput autocorrelations  

 

In our case, we used the Wavelet-based joint estimator of the Hurst exponent, as described by D. Veitch and P. 

Abry in (Veitch and Abry, 1999) and implemented in C in (Roughan et al., 2002). This estimation algorithm is 

the one used in the tool LDEstimate (LDEstimate, 2012) to study the Long-Range Dependence. In table 2, we 

compare the Hurst exponent estimation for the throughput generated by our tool with the throughput of the real 

capture at different time scales (from 100 us to 10 s). 

Conforming to (Veitch and Abry, 1999, data (see table 2) exhibit Long Range Dependence (LRD). Indeed, data 

show LRD when 0.5 < H < 1. Moreover, the dependence is stronger when H is closer to 1. Thus, we can 

conclude than in our case, we have a strong Long Range Dependence in both series of throughput, whatever the 



time window is defined. We can also conclude that both generated and original traffics exhibit the same LRD 

level (considering a 12 % error interval).  

Table 2: Hurst exponent estimations 

Sample duration for 

throughput 

measure-ments 

Hurst Exponent estimation 

(H) 

for our tool 

SourcesOnOff 

H exponent for the 

real throughput 

Ratio between generated 

traffic and real traffic 

100 us 0.88 0.83 7 % 

10 ms 0.97 0.95 2 % 

100 ms 1.00 1.00 0 % 

1 second 1.00 0.88 12 % 

10 s 1.00 1.00 0 % 

 

5. SourcesOnOff usages 

In this section, we address specific usages that we can imagine for this tool. For instance, it may be useful to 

apply transformations on the traffic profile we want to generate. Thus, let us imagine an example where we have 

a real data and its extracted statistic profile to be equivalent to a load of 100 users on the network. Assuming the 

hypothesis “the throughput is proportional with the number of users” and “the inter-flow durations are inversely 

proportional to the number of users”, we can do network provisioning with some simple mathematical operations 

on the raw parameters of the profile. It is, for us, extremely harder to do the same operations with a capture of 

raw packets that we would like to replay. 

In this section, we will consider an example where we want “to emulate the network intensity in the case we have 

now 150 users (rather the 100 users observed in the real data) but the same systems”. The goal is to be able to 

predict the final throughput Y (Mbps) that we need to generate with our tool to represent the 150 users. 

If the parameters of the Don and the Doff distributions are not adequate, the network throughput may differ 

greatly from expected. We can do an analogy with a sinusoidal signal. As illustrated in figure 10, if the signal is 

too low, the capacity will be underused, while if the signal is too much amplified, it will saturate the channel and 

measures will differ from a sinus. 

 

Figure 10: Explanation of tuning with the sinus function 

With a high-capacity network infrastructure, high values for inter-train durations (Doff) and low values for 

quantity of data per flow (Don), the network throughput will mostly be empty (~0% load), with bursts for each 

source starting. On the contrary, with a low-capacity network infrastructure, high values for Don and low values 

for Doff, the network will be soon saturated (~100% load). Then, the transmitter system may fail to create new 

sources, due to not enough network resources to establish new connections, until old connections finishes. 

Figure 11 illustrates the three cases of tuning: the blue line at left represents a low throughput generated by 

SourcesOnOff, the black line at the center of the figure a medium throughput and the blue line at right a high 



overhead where the network path is mostly saturated. Note that each of the three cases provides some 

information: high throughputs enable the tester to estimate the network path capacity, low throughputs to 

evaluate system behavior in front of burst and medium throughputs to evaluate system behavior to a regular and 

long stress. 

We can expect an average throughput of X Mbps = Don.average * (1/ Doff.average). In order to realize an 

average throughput of Y Mbps instead of the current average of X Mbps, we have to adjust proportionally the 

Doff average value: Doff_new_mean = (X/Y)*Doff_old_mean. In our opinion, the Don values correspond to 

the behavior of the users and the Doff values is inversely proportional to the number of users. So changing the 

Don parameters would make the flows unrealistic whereas the Doff average value would reduce the number of 

simultaneous flows. 

For some specific statistical profiles, the mean is not a characterization parameter of the distributions. For 

instance, this is the case for the Weibull distributions. These distributions use mostly a “scale” parameter which 

is proportional with the mean of the distribution. Thus, with Weibull distributions, we should apply the following 

equation: Doff_scale_new = (Y/X)*Doff_scale_old. 

If we come back to the pratical example we are considering in this section, we should do the same operation to 

reach our objective “emulate the network with 150 users instead of the 100 users”. This is achieved by dividing 

the Doff scale by a factor of 1.5 and thus we use a scale factor of 193 ms for the Doff Weibull distribution. This 

simple example gives a overview on how this SourcesOnOff tool can be easily tuned in order to manage 

different performance goals. 

 

Figure 11: Explanation of tuning impact on SourcesOnOff 

5. Conclusion and future work 

In this paper, we have introduced a methodology to generate network traffic with realistic characteristics. A tool 

has been developed, based on the application of ON/OFF sources with different statistical profiles. Parameters of 

the distributions can be defined by the user or extracted from real traffic analysis. We have completed this paper 

with a validation of both the traffic generation methodology and the SourcesOnOff tool. Different experiments 

have been conducted. All of them validate that our tool is able to generate traffic with the same characteristics 

than real ones.  

The tool is freely available and may be utilized for a wide variety of network traffic profiles. We hope users can 

appreciate the wide range of applications where SourceOnOff can be utilized. We can cite, for instance, network 

provisioning, application testing or network mechanism enhancement. For this last field of application, this tool 

can be useful to generate random data in order to observe bufferbloats, to stress an intermediary network system 

with a big number of simultaneous flows or to generate network traffics to observe TCP race conditions. 

However, additional work would have to be conducted by considering different traffic traces collected in 

different points of presence of the Internet. We could imagine to have an access in the future to traffic captured 

not only on the firewall of a LAN but also on a core router of the Internet. By putting our SourceOnOff tool 

freely available to the research community, we hope we can provide a first level of contribution to improve 

characterization results for Internet traffic understanding. 



Furthermore, this tool is currently unable to generate traffic different than TCP and UDP protocols. In the future, 

the tool may be completed with support for ICMP protocol or additional transport protocols such as SCTP 

(Stream Control Transmission Protocol) (Stewart, 2007) for instance. Moreover, the tool may support other 

statistical distribution profiles and may provide additional statistics for the users. The validation of this tool 

being completed, we can now take into account more complex network topologies (cloud computing applications 

for instance) and distribute different SourcesOnOff sender and receiver agents among them for the future 

experiments we plan to realize. 
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Notes 

Note 1. Tcpreplay website: http://tcpreplay.synfin.net/ 

Note 2. Harpoon website: https://github.com/jsommers/harpoon 

Note 3. Ostinato website : http://wiki.ostinato.googlecode 

Note 4. Note that for debugging purposes, additional information may be printed by the SourcesOnOff program, 

such as the TCP_INFO structure of each TCP flow just before the connection is closed. 

Note 5. Quantmod website: http://quantmod.r-forge.r-project.org 
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