Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Edge-Ratio Network Clustering by Variable Neighborhood Search

Abstract : The analysis of networks and in particular the identification of communities, or clusters, is a topic of active research with application arising in many domains. Several models were proposed for its solution. In [Cafieri et al., Phys. Rev. E 81(2):026105, 2010], a criterion is proposed for a graph bipartition to be optimal: one seeks to maximize the minimum for both classes of the bipartition of the ratio of inner edges to cut edges (edge ratio), and it is used in a hierarchical divisive algorithm for community identification in networks. In this paper, we develop a VNS-based heuristic for hierarchical divisive edge ratio network clustering. A k-neighborhood is defined as move of k entities, i.e., k entities change their membership from one to another cluster. A local search is based on 1-changes and k-changes are used for shaking the incumbent solution. Computational results on datasets from the literature validate the proposed approach.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-00979295
Contributeur : Céline Smith Connectez-vous pour contacter le contributeur
Soumis le : mardi 15 avril 2014 - 16:21:02
Dernière modification le : lundi 13 décembre 2021 - 11:34:06
Archivage à long terme le : : mardi 15 juillet 2014 - 11:16:35

Fichier

Cafieri_EPJB2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Sonia Cafieri, Pierre Hansen, Nenad Mladenovic. Edge-Ratio Network Clustering by Variable Neighborhood Search. The European Physical Journal B: Condensed Matter and Complex Systems, Springer-Verlag, 2014, 87 (5), pp 116. ⟨10.1140/epjb/e2014-50026-4⟩. ⟨hal-00979295⟩

Partager

Métriques

Consultations de la notice

274

Téléchargements de fichiers

2129