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Abstract. The annual number of daily flights in France has increased
from about 3500 in 1982 to about in 8000 in 2000. The number of flights
simultaneously present on the radar screen of the controller has also
increased. Usually controllers manage about 15 aircraft on their position
and sometime this number reach a maximum of 20. On the radar screen,
aircraft are represented by spots (with some previous positions and their
speed vector) and the associated label which give the flight ID, the speed
and the altitude of the aircraft. The controller in charge of the controlled
area, has to be able to select any aircraft in order to manipulate some
parameters of the flight such as heading, speed, altitude etc. Aircraft
selection is done by the mean of a virtual keyboard where the controller
pressed the keys of the flight ID. This ID is composed by a sequence of
three letters (maximum) which represents the airline code, followed by
the flight number. When such a selection is done, the associated flight
is made highlighting on the radar screen. Depending of the flight ID
distribution on a control position, the virtual keyboard can be optimized
in order to speed up the aircraft selections and to improve the work of
the controllers mainly when the sectors are overloaded. This keyboard
optimization problem may be addressed like a pure assignment problem
which is NP Hard. This paper shows how artificial evolution has been
used for solving such a problem with very good results on real instance
associated to the Roissy departure sector.

1 Introduction

When an aircraft flies from a city A to a city B, it has to be managed by
air traffic controllers in order to avoid collisions with others aircraft. Everyday,
about 8000 aircraft fly in the French airspace, inducing a huge amount of control
workload. Such a workload, is then spread by the mean of the airspace sectoring.
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The airspace is divided into geometrical sectors, each of them being assigned to
a controller team. When a conflict between two (or more) aircraft is detected,
the controller changes their routes (heading, speed, altitude) in order to keep a
minimum distance between them during the crossing. All flying aircraft are then
monitored during their navigation and so from the departure till the destination.
This monitoring is helped by mean of the flight ID. This ID is a code associated
to the flight composed by several letters related to the airline, followed by a
number. For instance, the ID TWA810 is associated to the flight Boston-Paris
operated by the TWA airline. All airlines have a normalized code given by the
ICAO1 authority. This code has a maximum length of 3 letters. Air France
has the code “AFR”, British Airways “BA” and so on. In order to proceed a
flight, the pilot has first to produce a flight plan which is a kind of summary of
the preferred navigation route. This flight plan gives the flight ID and a list of
navigation segments connected by normalized way points (points in the airspace
extracted from an official set produced by the civil aviation authority). For all
those points (2D), the pilot must produce the associated altitude or the flight
level2 of the aircraft when it will be above this point.

The flight ID selection is done by mean of a numerical keyboard for which
letters are associated to numbers like in a telephone keyboard. The fact that
two aircraft belonging to the same airline being in the same controlled area at
the same time, is very rare and the flight ID selection is done only on the letter
associated to the airline. When such uncommon event happen, the selection is
extended with the number.

Nowadays, the controller enters all letters of the flight ID. Instead of using
a physical keyboard, we propose to use a virtual one for which the alphabetic
association to the numeric keyboard will be optimized in order to speed up the
selection process.

For all controlled areas, it is easy to determine the number of Air France
flights, the number of TWA flights etc. and to build statistics about the airline
codes. This counting is done on the year base. An example of such a statistic is
given in the following table:

Number of flights Airline ID Airline Percentage
44 AFR Air France 23
24 BA British Airways 12
21 LF Lufthansa 11
... ... ... ...

Our problem is to synthesize a dedicated virtual keyboard to any controlled area

in order to minimize the average selection time of aircraft IDs. This keyboard

1 International Civil Aviation Organization
2 A flight level is a measure of altitude, given in hundred of feet by an altimeter

referenced to the 1013 hpa altisurface (average pressure at the sea level). For instance
if an altimeter measures a pressure of 164 hpa, there is a difference of 164-1013=-848
hpa which gives an altitude difference of 848∗23=19504ft (1hpa ⇒ 23ft); then the
associated flight level is 195.
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is based on the numerical keys like the telephone keyboard but the distribution
of the letters on those keys have to be optimized. The numerical keys has to
be kept because such a keyboard is also used for others numerical tasks of the
controller work.

In a first part, a refined description of the problem is given for which the
performance and the constraints of the virtual keyboard are given. The second
part proposes an associated mathematical modeling of the problem. The third
and the fourth parts show how artificial evolution has been applied to such a
problem. Finally the fifth part presents results on some real traffic sets.

2 Problem Description

Based on the airline statistics associated to the considered controlled area, one
has to find the optimal letter assignment on a numerical keyboard. The numerical
distribution of the keys on a telephone keyboard is given Figure 1.
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Fig. 1. Distribution of the letter on a telephone keyboard

The three boxes under each number are the potential positions of the letters;
so there are 30 positions where the airline ID letters can be included (a random
association has been represented in this example). Such a keyboard will generate
a translation between the alphabetic code (airline descriptor) and the resulting
numerical code. Having more boxes (30) than alphabetic letters (26), 4 null
characters will be included in such alphabet for completion. This association of
letters to the numerical keyboard has to optimize the following two criteria:

1. the total number of pressed keys;

2. the total distance on the keyboard.

Depending on the letter distribution, it is possible to produce automatic com-
pletion without ambiguity. As a matter of fact, suppose the following unrealistic
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airline code set is given :{AAA 50%;GGG 50%}. It says that 50% of the aircraft
has the airline code “AAA” and the other 50% has the code “GGG”. It is easy
to understand that the first letter is enough to remove the ambiguity between
the two possible airline codes subject that the two letters are located on two dif-
ferent keys. In such example, the number of pressed key reductions is given by :
(50%.2 + 50%.2).total number of aircraft. When the system has not ambiguity
anymore, it can highlight the associated aircraft.

For the key sequence which have to be pressed on the keyboard, the associated
distance has also to be minimized. The keyboard will try to put as close as
possible the letter associated to the most frequent letter codes.

Such optimization has to avoid also collisions between the resulting numerical
codes. As a matter of fact, different sequences of letters have to be coded by
different sequences of numbers in order to avoid ambiguities. For instance, in
the previous example, if the two letters “A” and “G” are coded by the same
number, the system will not be able to distinguish between the two airlines.

Some previous related works may be found in the reference [16] but the
objective is to compare the performances of several virtual keyboards without
optimization.

The problem that has to be solved is very closed to the one of information
compression as it appears in the information theory [6]. In such compression
process, a file composed of different characters has to be reduced in size in order
to be transmitted or stored on any data support. Initially, all the characters are
coded with the same binary digit sequence length. The idea consists in coding
with short binary digit sequences the most frequent characters and by long ones
the less frequent ones (Huffman algorithm [12]). Such approach is not adapted
for our problem for the two following reasons :

1. to applied the Huffman algorithm to such a problem, every sequence of letters
has to be considered as a “super-letter” of an alphabet composed of 27×27×
27 = 19683 characters (26 alphabetic letters plus the null character). The
Huffman algorithm will then produce a transcoding without any meaning for
the controller. For instance all the Air France (AFR) flights would be coded
by the sequence 24, the British Airways (BA) by the sequence 39. The two
initial alphabetic codes have a common letter, but the produced numerical
codes have no intersection;

2. the less frequent sequences could be coded with longer numerical sequences
compared to the maximum length of three in the alphabetic sequence which
is also very disturbing for the controller.

Instead of using such information theory tools which are not adapted enough
to our problem, we propose to address this problem from the combinatoric opti-
mization [13] point of view. Before presenting the method which has been used,
a mathematical model is first presented.
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3 Mathematical Modeling

The problem that has to be solved consists in finding an optimal assignment
of the alphabetic letters to the numerical keyboard with a maximum of three
letters per key (see Figure 1). This assignment represents the state space of our
problem.

If the initial alphabet is extended with 4 null letters (stars on Figure 1), a
point in our state domain can be considered as a permutation of those 30 letters
(26 alphabetics plus 4 nulls). If numbers are assigned to all alphabetic letter (A
→ 0; B → 1; C → 2; . . . ; Z → 25; Null → 26; . . . ; Null → 29), state points are pure
permutations among those 30 integers. In order to evaluate such a point in the
state space, an objective function has to be defined. As it has been mentioned in
the introduction, the optimization process must minimize the number of pressed
keys and the distance covered on the numerical keyboard during code entering
process. To compute this objective, the first step consists in computing the list
of numerical codes (Ñ) builded from the alphabetic sequences (L̃) and the given
permutation (P ). Based on this initial list, each numerical sequence is checked
with the other ones in order to determine the last superfluous digits which can be
removed in the final numerical sequences. Those final sequences will be the ones
which will be effectively pressed on the keyboard. The system will then produce
the automatic completion and will highlight the associated flight. Those final
sequences will be also called compressed sequences in the following. In order to
compute the distance related to the pressed keys, a distance matrix has been
introduced. To build such a matrix, it has been supposed that only one finger
presses the keys on the numerical keyboard and the initial position of this finger
is under the “0” key as it can be seen on Figure 1.

The associated matrix is given by (the numbers expressed in this matrix are
in “d” unit):
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It can be noticed that when a key is pressed two times, the associated distance
is not zero but half d. So, for a given numerical code, the distance of the overall
path is given by the summation of the individual distances between keys.

D(Ñ ′
i) =

|Ñ ′
i
|−1

∑

j=1

[

d
Ñ ′

ij
,Ñ ′

ij+1

]

where |Ñ ′
i | represents the length of the considered compressed code (Ñ repre-

sents the induce code by a permutation and Ñ ′ after compression). For instance
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the numeric code 753 has the distance
√

5 +
√

2 +
√

2. This distance being com-
puted on the compressed numerical codes (code without superfluous last digits),
its minimization meets two objectives (minimization of the number of pressed
keys and the remaining distance). In order to take into account the statistics
associated to each code, the distance is weighted by the number of flight having
this code. So, a permutation P is evaluated the following way :

O(P ) =

i=|N ′(P )|
∑

i=1

D(Ñ ′
i).NB(Ñ ′

i)

where N ′(P ) is the set of numerical codes associated to P after compression;

and NB(Ñ ′
i) the number of flights with the code Ñ ′

i .
Having now defined the state space and the objective function, one has to

identify the associated constraints of this problem. The main constraint can
be summarized the following way: two different alphabetic sequences have to

produce two different numerical sequences. For a given permutation P , the as-
sociated constraint violation criterium is computed by counting the identical
compressed numerical code induced by a permutation P . The number of con-
straint violations is then given by :

Nv(P ) =

i=|N ′(P )|
∑

i=1

j=|N ′(P )|
∑

j=1

j=i

δ[Ñ ′
i(P ), Ñ ′

j(P )]

where

δ[Ñ ′
i(P ), Ñ ′

j(P )] =

{

1 si Ñ ′
i(P ) = Ñ ′

j(P )
0 sinon.

This number is taken into account in the optimization process by relaxation.
Then, the constraint factor will be stronger at the end of the optimization process
than at the beginning.

Having now defined a mathematical model for our problem one must identify
the associated complexity. As it has been previously shown, one has to find an
optimal assignment of 26 letters to 30 boxes. The number of possibilities is given
by3: 30!

4! .
The problem we have to solved is an assignment problem which is known to

be NP Hard and artificial evolution is quite adapted to address such a problem.

4 Artificial Evolution

Artificial evolution is an optimization algorithm belonging to the class of stochas-
tic optimization techniques. Simulated annealing [8], taboo search [4], branch and
probability bound [17] etc..., belong also to such class. Such techniques usually

3 The first letter has 30 choices, the second 29 and so on: 30.29 . . . 5 = 30!

4!
(the number

4 comes from the 4 null letters which have been included).
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addressed problem with strong complexity for which the objective function has
no specific feature such as convexity, continuity etc. The main feature of those
stochastic optimization techniques is to randomly move in the state domain in
order to improve the objective criterium. Evolutionary Algorithms (EA) [5,7,
3,11,9,2,14] are problem solving systems based on principles of evolution and
heredity. An EA maintains a population of individuals,P (t) = x1, x2, . . . , xn at
iteration t. Each individual represents a potential solution to the problem at
hand and is implemented as some (possibly complex) data structure S. Each
solution xi is evaluated to give some measure of fitness. Then a new population
at iteration t + 1 is formed by selecting the fitter individuals. Some members
of the new population undergo transformation by means of genetic operators
to form new solutions. There are unary transformations mi (of mutation type),
which create new individuals by a small change of a single individual and higher
order transformations ci(crossover type), which create new individuals by com-
bining parts from several (two or more) individuals. For example, if parents are
represented by a five-dimensional vector (a1, a2, a3, a4, a5) and (b1, b2, b3, b4, b5),
then a slicing crossover of chromosomes after the second gene produces offspring
(a1, a2, b3, b4, b5) and (b1, b2, a3, a4, a5). The control parameters for genetic op-
erators (probability of crossover and mutation) need to be carefully selected to
provide better performance. The intuition behind the crossover operation is in-
formation exchange between different potential solutions. After some number of
generations the program converges - the best individual hopefully represents the
optimum solution.

The structure of the EA which has been used for our experiments is given
Figure 2. To move from generation k to generation k + 1, the population is first

Selection (λ,µ)

Evaluation
Scaling

MutationCrossoverNothing

λ

µ

1−Pc−Pm Pm
Pc

POP(k)

POP(k+1)

Fig. 2. Structure of the Evolutionary Algorithm
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evaluated and the associated fitness is also scaled using a classical power law scal-
ing principle [5]. Afterward, the best individuals are selected with a tournament
selection (λ; μ) and then undergo the recombination process. Then, individuals
can be put straightly in the next population (“nothing” operator), crossed over
(crossover operator) or mutated (mutation operator). Those operators are ran-
domly selected based on their associated probabilities ((1−Pm −Pc) → nothing;
Pc → crossover; Pm → mutation). The probability of mutation is self adapted
to the problem using the Reichenberg rule with a constraint interval limiting
this probability between [0.5, 0.7]. This scheme has been successfully used for
our keyboard optimization experiments.

5 Application to Keyboard Optimization

5.1 Coding

In order to make run such Evolutionary algorithm, a coding of the state space
has been developed. Two potential codings have been proposed. The first one
is based on the pairwise decomposition property of any permutation of size N .
As a matter of fact, any permutation of size N can be decomposed into a list of
exchanges between pair of positions, subject that the minimum number of swaps
is at least N log(N). From the mathematical point of view, this property can be
formulated the following way. Suppose that a permutation P of size N and a
pairwise swapping operator T are given. When the permutation P is applied to
an initial list L1, it produces a new list noted L2. This means that L2 = P (L1).
This list L2 can also be reach by the successive application of the operator T

on some pairs of position: L2 = T1 ◦ T2 ◦ . . . ◦ TK(L1) subject that K is greater
than N log N (where ◦ is the composition operator). The structure of such a
coding is given Figure 3. This coding is convenient because crossover like slicing

6

3

5

2

2

6 7

1

i

j

......

TTTT1 T2 3 4 K

Fig. 3. Coding based on pairwise permutation operator T

or uniform can be straightly applied to any chromosome without checking the
integrity of the children (as a matter of fact, the application of such a crossover
insures that the produced permutation will be valid (one letter is assigned to
only one numerical key)). In the some way, it is very easy to develop a mutation
operator by randomly choosing a locus in the chromosome and put a new random
pairwise permutation.
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Unfortunately, this coding produced poor results in our experiments and a
more straight one has been used without crossover operator. This new coding is
just an array of integers describing the overall permutation as it can be shown
Figure 4.

2417 9 27 12 1531

1 2 3 4 5 28 29 30

P(i)

i

Fig. 4. Straight coding of the permutation P

In this example the 17th letter is assigned to the first position, the 24th to
the second one and so on.

The mutation operator consists in exchanging two random positions (i, j) in
the chromosome like it can be seen Figure 5 (in this example the size of the
chromosome is 12 instead of 30 in our problem).

12 3 4 5 11 7 89 10 16 2

12 3 2 4 5 611 7 89 10 1

ji

Fig. 5. Mutation operator

The associated fitness evolution takes into account the constraint criterium
(Nv) and the overall distance induced by the keyboard. As it has been previously
noticed, this distance minimization takes into account the code compressions
(when a flight can be selected only by the first digits in the numerical code,
the final ones has not to be pressed on the numerical keyboard). The fitness
associated to a chromosome C is then given by :

Fitness(C) = e−λ.Nv(C).
1

(

D(C)
NF

)

where λ = gen
nb gens

(gen current generation number; nb gens: total number of

generations), D(C) the total distance associated to the chromosome C and NF

the total number of flights. To compute D(C) and Nv(C), the keyboard is build
from the permutation associated to C. Then all alphabetic codes are then con-
verted into numerical codes and compressed when it is possible. Based on this set
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of numerical codes, the number of collisions is then computed (Nv: the number of
numerical codes which are similar) which is the number of constraint violations.
The overall distance on the proposed keyboard is then computed using the dis-
tance matrix. This distance takes into account the number of flights associated
to a given numerical code.

6 Results

This method has been applied to the departure sector of Roissy Airport. During
one year this sector is crossed by about 300000 aircraft. The set of alphabetic
codes is given on the following table (only the beginning of the table is repre-
sented).

Airline ID AFR AF DLH BAW FPO AZA SAS BCY BMA ...
Nb Flights 97071 23689 14324 9165 7359 7332 4862 4328 3944 ...

The parameters of the evolution were the followings: population size 300;
number of generations 400; λ = 7, μ = 2 and initial probability of mutation 0.6.
The evolution of the best fitness, the average and the associated dispersion are
given Figure 6(a). This fitness has to be maximized and the observed decreasing
is due to the constraint relaxation for which the constraint violation criterium
becomes stronger and stronger. The discontinuities of the fitness appear when
the number of constraint violations decreases (see 6(b)). The associated keyboard
distance reduction and the number of compressions are represented on figure 7.
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Fig. 6. Fitness and constraint violations evolution

As it can be seen on the figure, the distance has a smaller value at the beginning
of the evolution than at the end but it is also the period where the constraint
are not respected. The final distance is about 2.7.106 which is really smaller to
the one induced by the actual keyboard: 3.9.106. The associated reduction of
pressed keys is about 45.103. Finally the synthesized keyboard is represented
Figure 8. The optimization process has reduced significantly the distance of the
most frequent airline codes like AFR, DLH, BAW (closest to the finger position).
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7 Conclusion

This paper has presented a real word application of the Artificial Evolution
technique. Results proposed by the algorithm really improve the selection per-
formance of the flight ID on the control position. The paper has first described
the operational context of the flight ID selection and the underlying keyboard
optimization problem. The objective function, the state space and the associated
constraints have been presented with the associated mathematical formulation.
Due to the induced complexity of such a problem, stochastic optimization has
been supposed to be a good candidate to solve this problem. Artificial evolution
has been presented and adapted to the keyboard optimization problem. Finally,
the algorithm has been tried on a real instance of the problem related to de-
parture sector of Roissy Airport. The given results really improved the flight ID
selection with a large reduction of pressed key. In a near future, this tool will be
adapted to several control positions with different flight IDs in order to check if
the produced results are as good as the ones given for the departure sector of
Roissy Airport.
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