Arrêt de service programmé du vendredi 10 juin 16h jusqu’au lundi 13 juin 9h. Pour en savoir plus
Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Trajectory prediction : a functional regression approach

Abstract : To solve the problem of trajectory prediction, traditional approaches can be classified into three categories : learning algorithms, nonparametric algorithms, simulation algorithms. The approach of this paper is to use the functional regression for the trajectory prediction, ie a method between learning algorithms and nonparametric methods. The proposed approach consists in the optimal decomposition of trajectories on a functional Karhunen Loève base and to learn the weights with a large set of registered trajectories. Those weights are also functions. Based on this optimal decomposition, generalization process enables to predict the shape of the trajectory in the near future. This method has been applied on real aircraft trajectories with successful results.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal-enac.archives-ouvertes.fr/hal-01004152
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : mardi 1 juillet 2014 - 17:13:02
Dernière modification le : mardi 19 octobre 2021 - 11:02:49

Identifiants

  • HAL Id : hal-01004152, version 1

Collections

Citation

Daniel Delahaye, Stéphane Puechmorel, Loïc Boussouf. Trajectory prediction : a functional regression approach. ICRAT 2008, 3rd International Conference on Research in Air Transportation, Jun 2008, Fairfax, United States. pp xxxx. ⟨hal-01004152⟩

Partager

Métriques

Consultations de la notice

245