
 

1 Introduction 
 

In the last decade a large interest has risen for new non linear 

control approaches such as non linear inverse control [1,2,3], 

backstepping control [4] and differential flat control [5,6]. 

These control law design approaches present some strong 

similarities which have remained unclear until today. In this 

communication relations between the non linear control 

approach and the differential flat control approaches are 

tackled through the consideration of the relative degrees of 

the tracked outputs. Additional assumptions and definitions 

appear to be opportune in this study, such as effect 

independency of the inputs of a general non linear system, 

output observability and output controllability of a 

differential flat system. 

The application considered in this study is about trajectory 

tracking by a four rotor aircraft. The flight mechanics of 

rotorcraft are highly non linear and different control 

approaches (integral LQR techniques, integral sliding mode 

control) have been considered with little success to achieve 

not only autonomous hovering and orientation, but also 

trajectory tracking  

More recently nonlinear analytical control design 

techniques have been applied to rotorcraft trajectory 

tracking [7,8]. It appears that the flight dynamics of the 

rotorcraft present a two level differential flat structure which 

is made apparent when a new set of equivalent inputs is 

defined. This allows to introduce here a non linear inverse 

control approach with two time scales, one devoted to 

attitude, heading and altitude control and one devoted to 

horizontal trajectory tracking.  

 

2 Differential Flat Output and Control 
 

Consider a general non-linear dynamic continuous 

system given by:                       

 ),( UXfX ��                               (1) 

                                  � �XhY �                                   (2) 

where X� n, U� m, Y� m, f is a smooth vector field of X 

and U and h is a smooth vector field of X.  

It is supposed here that the considered inputs are 

independent which means that each input has an 

independent effect over  the state dynamics: 

� � mufufrank mi ����� /,,/ �              (3) 

 so that U can be extracted from (1) and it is possible to 

write: 

),( XXgU ��                             (4) 

where g is a smooth function. 

 

2.1  Relative degrees of outputs for nonlinear systems 

 

According to [1] the system (1)-(2) is said to have with 

respect to each independent output Yi , a relative degree ri  if 

the output dynamics can be written as: 
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with          mjrsXaY jjs

s

j ,,1,,,0)()(
�� ���     (6) 

and                 mjUUXb j ,,10/),( �����           (7) 

The output dynamics (5)-(6) can be rewritten globally as:  
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UXBY �                           (9) 
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The relative degrees obey (see [2]) to the condition: 

 

mnr
m

i i ��� �1
                    (13) 

When the strict equality holds, vector Y
~~

 can be adopted as 

a new state vector for system (1), otherwise internal 

dynamics must be considered. Then any control law based 

on output feedback will be unable to master these internal 

dynamics and if these internal dynamics are unstable, the 

control scheme will be inappropriate. When internal 

dynamics are stable or don’t exist, it will be worth to 

consider an output feedback control law. From (9), while 

B(X, U) is invertible with respect to U, an output feedback 

control law such as: 

YXBXU u

~
)()(

1��                   (14) 

can be adopted. 

 

2.2  Differential flat systems 

Now suppose that Z 
mR� is a differential flat output for 

system (1), then from [3] the state and the input vectors can 

be written as: 
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with 
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where � (.) is a function of Zj and its derivatives up to order 

sj, and � (.) is a function of Zj and its derivatives up to order 

sj+1, for   j = 1 to m where the sj are integers. 

It appears of interest to introduce here three new definitions: 

 

The differential flat system  is said output observable if : 

nZrank �	
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/( �                         (17-1) 

The differential flat system is said full flat differential if: 
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The differentiable flat system (1) is said output controllable 

if: 

0])
~

/det([ ��� Z�                        (17-3) 

In that case too, it is easy to derive a control law of order 

sj+1 with respect to output j by considering an output 

dynamics such as: 
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~~

(
~

VZCZ �                          (18-1) 

where  C is such that the dynamics of  Z are stable and where 
mRV � is an independent input . Then: 
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3  Necessary and Sufficient Condition for Output 

Differential Flatness 

 

3.1 Flatness and internal dynamics  
 

It appears  from relations (8) and (9) that a sufficient 

condition for system (1) to be differentially flat output 

observable and output controllable with respect to Y given 

by (2)  is that A is invertible with respect to X and that B is 

invertible with respect to U. 

 A necessary and sufficient condition for the invertibility 

of A is: 

mnr
m

i i ��� �1
                      (19) 

while (3) is a necessary condition for the invertibility of B 

with respect to U. In that case it is possible to define 

functions � and �  by: 
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Here:               

       mtojrs jj 1��                     (22) 

Then we have got here a practical way to check if a given 

output vector Y  is a differential flat output:  it should be 

such as the corresponding matrices A and B are respectively 

global invertible and invertible with respect to U , while 

condition (19) should be satisfied.  

Then, a sufficient condition for differential flatness of Z is 

that Z
~~

 is a state vector for system (1), i.e. there are no 

internal dynamics in this case.  

 

3.2 Relative degree of a flat output 

 

Suppose now that system (1) is a differential flat output 

observable and output controllable system where Z are the 

flat outputs with relative degrees rj, j=1 to m. Then for a full 

flat differential system , from (15-1) and (16-1) we can 

write: 

)(
~~

XZ ��                                    (23) 
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where � is a mapping from Rn to Rn . Then, from (15-2) and 

(16-2) we can write: 

 ),
~~

(
~

UZZ ��                                (24) 

where � is a mapping from Rn to Rm . Then, taking into 

account (23): 
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where E is a mapping from Rn+m to Rm. 

Then, comparing (23) and (24) with (8) and (9),  all the 

relative degrees rj are superior or equal to the corresponding 

sj.  Suppose now that  for some � �mj ,,1��  we have 

0/ ��� Ue j
  then rj is necessarily strictly superior to sj and 

we should have: 
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               (26) 

 

Considering (13) and (17-2), this is impossible.  Then for a 

full flat differential system we have necessarily: 

         misr ii ,,1���                      (27)  

 

3.3 Output feedback control for trajectory tracking 

 

From the above considerations it appears that there is no 

difference between a differential flat control law  and a non 

linear inverse control law when applied to an output 

observable and output controllable differential flat system 

with the same control objectives for the respective outputs. 

Then, coming back to relation (14), and supposing that the  

nonlinear system (1)-(2) is an output observable and output 

controllable differential flat system, a new control input  v = 

[v , …, vm]’  can be introduced in place of Y
~

  such as: 
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making the jth output to follow linear dynamics of order 

1�jr towards the target value Ydj . This makes the dynamics 

of the tracking error given by: 

                
djjj YYe ��   j=1 to m               (29) 

 be such as: 
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where the coefficients cik can be chosen to make the output 

dynamics asymptotically stable and ensure the tracking of 

output Yi towards the reference output Ydi. Observe that in 

the present case relation (20) holds and there are no internal 

dynamics. To cope with the saturation of the actuators, the 

choice of the coefficients cik should be the result of a 

trade-off between the characteristics of the transient 

dynamics of the different outputs and the extreme 

solicitations of the inputs. 

An output non observable differential flat system, when 

controlled through output feedback will present non 

controlled internal dynamics. While an output non 

controllable flat system will be unable to make its outputs 

follow, through an output feedback control, decoupled 

linear dynamics of order  sj+1, j = 1 to m. 

 
4 Differential Flatness of Rotorcraft Dynamics 
 

The considered system is shown in figure 1 where  rotors 

one and three are clockwise while rotors two and four are 

counter clockwise. The main simplifying assumptions 

adopted with respect to flight dynamics in this study are a 

rigid cross structure, no wind, negliggible aerodynamic 

contributions resulting from translational speed, no ground 

effect as well as negligible air density effects and very small 

rotor response times. It is then possible to write simplified 

rotorcraft flight equations [7]. 

The rotor forces and moments for the rotorcraft displayed in 

figure 8 are given by: 

2
ii fF !�      � �4,3,2,1�i      (31) 

2
iii fkFkM !�� � �4,3,2,1�i      (32) 

 

 

 

 
 
 

Fig. 1: Reference frame and forces of a four rotorcraft 

 

where f and k are positive constants and !i is the rotational 

speed of rotor i. Since the inertia matrix of the rotorcraft can 

be considered diagonal with Ixx = Iyy, the roll, pitch and yaw 

moment equations may be written as: 

 

         xxIrqkFFlp /))(( 224 ����               (33-1) 

yyIrpkFFlq /))(( 431 ����               (33-2) 

zzIFFFFkr /))(( 3412 �����            (33-3) 

Where p, q and r are the roll, pitch and yaw body angular 

rates. Here )(2 yyzz IIk ��  and   )(4 zzxx IIk �� , where Ixx, Iyy 

and Izz are the inertia moments in body-axis, and l is the 

length of the four arms of the rotorcraft. 

", # and $ are respectively the bank, pitch and heading 

angles, then the Euler equations relating the derivatives of 

the attitude angles to the body angular rates, are given by: 

)cos)(sin( rqtgp ""#" ����            (34-1) 

rq ""# sincos ���                    (34-2) 

#""$ cos/)cos(sin rq ���            (34-3) 
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In this study it is assumed that there is no wind. The 

acceleration � �'zyx aaaa � of the centre of gravity, taken 

directly in the local Earth reference frame, is such as: 

)))sin()sin()cos()sin())((cos(/1( Fmax "$"#$ ��    (35-1)                        

)))sin()cos()cos()sin())((sin(/1( Fmay "$"#$ ��    (35-2) 

))cos())(cos(/1( Fmga z "#��               (35-3)                                     

where x, y and z are the centre of gravity coordinates,  m is 

the total mass of the rotorcraft and: 

 
4321 FFFFF ����             (36) 

In equations (33-1) and (33-2), the effect of the rotor forces 

appears as differences so, we define new attitude inputs uq 

and up as: 

31 FFuq ��                      (37-1) 

24 FFup ��                      (37-2) 

In the heading and position dynamics, the effects of rotor 

forces and moments appear as sums, so we define new 

guidance inputs u$ and uz as: 

)()( 3142 FFFFu ����$             (37-3) 

4321 FFFFFuz �����             (37-4)                            

Equations  33-1, 33-2 and 33-3 are rewritten: 

xxp Irqkulp /)( 2���                (38-1) 

yyq Irpkulq /)( 4���               (38-2) 

zzIukr /$��                        (38-3) 

Finally, the motion equations of the rotorcraft can be written 

in non-linear state form as: 

),( uxfx ��                       (39-1) 

where      )',,,,,,,,,,,( zyxzyxrqpx ���$#"�    (39-2)                                          

and                  )',,,( zqp uuuuu $�            (39-3)   

It appears that controls  uq and ur can be made to vary 

significantly with u$ and uz remaining constant. Attitude 

angles " and # can be seen as virtual controls for the 

horizontal position of the rotorcraft. Here the attitude 

dynamics are considered to be the fast dynamics, they are at 

the heart of the control system. The heading and height 

dynamics are intermediate while the dynamics of the 

horizontal position coordinates are the slower. This can lead 

to a two-level closed-loop control structure. In this two level 

control structure, the final outputs are the coordinates of the 

center of gravity of the rotorcraft x, y, z and its heading $ 

while the intermediate outputs are given by vector 

)',,,( zZ $#"�  . 

Then the Euler equations provides the expressions : 

$#" �� sin��p                       (40-1) 

$#"#" �� cossincos ��q                (40-2) 

$#"#" �� coscossin ���r            (40-3) 

while u can be expressed by inversion of the set of equations 

(38-1), (38-2), (38-3) and (35-3), or more specifically: 

lqrkpIu xxp /)( 2��� �                (41-1) 

lprkqIu yyq /)( 4�� �                    (41-2) 

krIu zz /)( ���$                       (41-3) 

)cos/(cos))(( "#mgzu z ��� ��                (41-4) 

Then, it can be concluded that the attitude and heading 

dynamics as well as the vertical dynamics of the rotorcraft 

are differentially flat when considering the input-output 

relation between u and Z. Here, the relative degrees of #, ", 

$ and z are all equal to 2 while the dimension of the attitude, 

heading and altitude dynamics are of the 8th order, then 

relations (20) holds while it can be easily shown that these 

differential flat dynamics are output observable and output 

controllable. 

When considering outputs x and y from entries # and ", 

where $ and z play the role of parameters, it appears from 

equations (35-1) and (35-2) that these slow dynamics are 

also output observable and output controllable differential 

flat with relative degrees equal to two for a 4th order 

dynamics. This leads to propose the control structure 

displayed in figure 2 . 
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Fig. 2: Proposed control structure 

 

5 Rotorcraft Trajectory Tracking 

 
Here we are interested in controlling the four rotor  aircraft 

of figure 3 so that its centre of gravity follows a given path 

with a given heading $  while attitude angles # and " remain 

small. Many potential applications require not only the 

centre of gravity of the device to follow a given trajectory 

but also the aircraft to present a given orientation. 

 

 5.1 Fast dynamics control 
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We adopt for the flat outputs second order dynamics and 

their second derivative should be such as: 

d"�� = )(2
2

cc""!"!% """ ��� �                       (42-1) 

d#�� = )(2
2

cc##!#!% ### ��� �                      (42-2) 

d$�� = )(2
2

c$$!$!% $$$ ��� �                      (42-3) 

dz�� = )(2
2

czzz zzz ��� !!% �                   (42-4) 

 

 

 

Fig 3: The considered rotorcraft 

 

The expressions of the control inputs in relations (41-1) to 

(41-4) are fed by rqp ,, given by relations (40-1) to (40-3) 

and by rqp ��� ,, given by: 

ddp $#$##" ������� sincos ���               (43-1) 

$"#"$##"

$#"#"

����

�����

coscos)sin1(sin

cossincos

���

�� ddq
         (43-2) 

$##"$"#"#""

$#"#"

������

�����

sincoscossincos

coscossin

���

��� ddr        (43-3) 

 

where ddd $#" ������ ,, and  dz�� are given by (42-1) to (42-4) 

where appear the current target values for " and # , "cc and 

#cc, and the final target values of $ and z, $c and zc. 

 

5.2  Design of horizontal  guidance control law  

 

Now, considering equations (35-1) and (35-2), to insure that 

x and y adopt second order dynamics such as: 

 0)(2
2 ���� cxxx xxxx !!% ���             (44-1) 

0)(2
2 ���� cyyy yyyy !!% ���             (44-2) 

following the non linear inverse control approach, cc" and 

cc#  must be chosen such as: 

0)(2

))sinsincossin)((cos/1(

2 ����

�

cxxx

zcccccc

xxx

um

!!%

"$"#$

�

         (45-1) 

0)(2

))sincoscos)sin()((sin/1(

2 ����

�

cyyy

zcccccc

yyy

um

!!%

"$"#$

�

        (45-2) 

Then :                                                    

)/)cos(sinarcsin( zyxcc uDDm $$" ��            (46-1) 

)cos/()sin(cosarcsin( czyxcc uDDm "$$# ��          (46-2) 

where         )(2
2

cxxxx xxxD ���� !!% �                  (47-1) 

)(2
2

cyyyy yyyD ���� !!% �                  (47-2) 

5.3 Cases studies 

Here we consider two cases: one where the objective is 

to hover at an initial position of coordinates x0, y0, z0 while 

acquiring a new orientation $1, and one where the rotorcraft 

is tracking the helicoïdal trajectory of equations: 

 

ttxc &' cos)( �                             (48-1)                 

ttyc &' sin)( �                          (48-2) 

tzc () ��                              (48-3) 

2/)( *&$ �� ttc                         (48-4) 

where '  is a constant radius and (  is a constant path angle. 

        

Heading control at hover 

 

In this case we get the guidance control laws: 

c
zz

k

I
u $$ ���            gmu z �            (49) 

with the following reference values for the attitude angles: 

0�c#    and    0�c"                      (50) 

Here the heading acceleration is given by: 

)(2 1
2 $$!!%$ $$$ ���� rc

��               (51) 

Starting from an horizontal attitude ( #(0)=0, "(0)=0), 

attitude inputs uq and up remain equal to zero. Then, figures 

4 and 5 display some correspondent simulation results. 

 

Trajectory tracking case 

 

In this case we get the guidance control laws: 

 
2220 gmuu z ��� &'$                (52) 

 

Here the permanent reference values for the attitude angles 

are such as: 

0�c#                            (53) 

            and                  
242

2
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g
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                                 Fig. 4: Hover control inputs 
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                           Fig. 5: Heading response during hover 

 

and the desired guidance and orientation accelerations are 

given by: 

0,0

)sin(

)cos(
2

2
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 In figures 6 to 8 simulation results are displayed where at  
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Fig. 6: Evolution of rotorcraft horizontal track 
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Fig. 7: Evolution of rotorcraft altitude 
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Fig. 8: Rotorcraft trajectory tracking inputs 

 

initial time the rotorcraft is hovering. 

 

6  Conclusion 

In this communication the relation between differential 

flatness and the effective applicability of non linear inverse 

control approach has been studied. Considering the relative 

degrees of the outputs of a non linear system, necessary and 

sufficient conditions for differential flatness have been 

displayed. It has been shown that the application of the non 

linear inverse approach to an output observable and output 

differential flat system leads to an output feedback control 

law  identical to the one derived from the differential flat 

control approach. Then the non linear flight dynamics of a 

rotorcraft have been analyzed and it has been shown that 

these dynamics are differential flat with output observability 

and output controllability properties. The  application of the 

non linear inverse control approach to this four rotor aircraft 

has been considered and a trajectory tracking control 

structure based on two non linear inverse control layers has 

been proposed.  
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