Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Forecasting workload and airspace configuration with neural networks and tree search methods

David Gianazza 1, 2 
Abstract : The aim of the research presented in this paper is to forecast air traffic controller workload and required airspace configuration changes with enough lead time and with a good degree of realism. For this purpose, tree search methods were combined with a neural network. The neural network takes relevant air traffic complexity metrics as input and provides a workload indication (high, normal, or low) for any given air traffic control (ATC) sector. It was trained on historical data, i.e. archived sector operations, considering that ATC sectors made up of several airspace modules are usually split into several smaller sectors when the workload is excessive, or merged with other sectors when the workload is low. The input metrics are computed from the sector geometry and from simulated or real aircraft trajectories. The tree search methods explore all possible combinations of elementary airspace modules in order to build an optimal airspace partition where the workload is balanced as well as possible across the ATC sectors. The results are compared both to the real airspace configurations and to the forecast made by flow management operators in a French "en-route" air traffic control centre.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger
Contributeur : Céline Smith Connectez-vous pour contacter le contributeur
Soumis le : vendredi 11 juillet 2014 - 10:23:13
Dernière modification le : lundi 4 juillet 2022 - 09:38:31
Archivage à long terme le : : samedi 11 octobre 2014 - 10:41:34


Fichiers produits par l'(les) auteur(s)



David Gianazza. Forecasting workload and airspace configuration with neural networks and tree search methods. Artificial Intelligence, Elsevier, 2010, 174 (7-8), pp 530-549. ⟨10.1016/j.artint.2010.03.001⟩. ⟨hal-01020725⟩



Consultations de la notice


Téléchargements de fichiers