M. Almiron, E. Almeida, and M. Miranda, The reliability of statistical functions in four software packages freely used in numerical computation, Brazilian Journal of Probability and Statistics, vol.23, issue.2, pp.107-119, 2009.
DOI : 10.1214/08-BJPS017

D. Beazley, Python Essential Reference, 2001.

P. Borcherds, Python: a language for computational physics, Computer Physics Communications, vol.177, issue.1-2, pp.199-201, 2007.
DOI : 10.1016/j.cpc.2007.02.019

O. Bröker, O. Chinellato, and R. Geus, Using Python for large scale linear algebra applications, Future Generation Computer Systems, vol.21, issue.6, pp.969-979, 2005.
DOI : 10.1016/j.future.2005.02.001

C. Choirat and R. Seri, Econometrics with Python, Journal of Applied Econometrics, vol.17, issue.2, pp.698-704, 2009.
DOI : 10.1002/jae.1088

F. Cribari-neto, Z. , and S. , R: yet another econometric programming environment, Journal of Applied Econometrics, vol.33, issue.3, pp.319-329, 1999.
DOI : 10.1002/(SICI)1099-1255(199905/06)14:3<319::AID-JAE533>3.0.CO;2-Q

A. Downey, Think Python: How to think like a computer scientist -Version 1, 2008.

N. Elkies, On A 4 + B 4 + C 4 = D 4, Mathematics of Computation, vol.51, pp.825-835, 1988.

W. Greene, Econometric Analysis, 2008.

M. Hetland, Beginning Python: From Novice to Professional, Apress, 2005.

C. Kleiber and A. Zeileis, Applied Econometrics with R, 2008.
DOI : 10.1007/978-0-387-77318-6

R. Koenker and A. Zeileis, On reproducible econometric research, Journal of Applied Econometrics, vol.20, issue.9, pp.833-847, 2009.
DOI : 10.1002/jae.1083

H. Langtangen, Python Scripting for Computational Science, 2005.

S. Laurent, U. , and J. , Bridging the gap between Ox and Gauss using OxGauss, Journal of Applied Econometrics, vol.61, issue.1, pp.131-139, 2005.
DOI : 10.1002/jae.809

J. Lucks, Python -All a Scientist Needs. arxiv.org/pdf/0803, 1838.

J. Meinke, S. Mohanty, F. Eisenmenger, and U. Hansmann, SMMP v. 3.0???Simulating proteins and protein interactions in Python and Fortran, Computer Physics Communications, vol.178, issue.6, pp.459-470, 2008.
DOI : 10.1016/j.cpc.2007.11.004

R. Nelsen, An Introduction to Copulas, 2006.
DOI : 10.1007/978-1-4757-3076-0

J. Nilsen, MontePython: Implementing Quantum Monte Carlo using Python, Computer Physics Communications, vol.177, issue.10, pp.799-814, 2007.
DOI : 10.1016/j.cpc.2007.06.013

URL : http://arxiv.org/abs/physics/0609191

J. Nilsen, Python in scientific computing: Applications to Bose???Einstein condensates, Computer Physics Communications, vol.177, issue.1-2, p.45, 2007.
DOI : 10.1016/j.cpc.2007.02.093

T. Oliphant, Guide to NumPy. www.tramy.us/numpybook.pdf, 2006.

M. Ooms, Trends in applied econometrics software development 1985-2008, 2009.

M. Ooms and J. Doornik, Econometric software development: past, present and future, Statistica Neerlandica, vol.48, issue.2, pp.206-224, 2006.
DOI : 10.1111/1468-0262.00152

A. Patton, Copula-based models for financial time series In Handbook of Financial Time Series, 2009.

M. Pilgrim, Dive into Python, 2004.

J. Racine and R. Hyndman, Using R to teach econometrics, Journal of Applied Econometrics, vol.46, issue.2, pp.175-189, 2002.
DOI : 10.1002/jae.657

C. Renfro, A compendium of existing econometric software packages, Journal of Economic and Social Measurement, vol.29, pp.359-409, 2004.

S. Steinhaus, Comparison of mathematical programs for data analysis (Edition 5.04), 2008.

G. Van-rossum, The Python Library Reference: Release 2.6.2. docs.python.org/archives/ python-2.7-docs-pdf-a4.zip, 2010.

A. Zeileis and R. Koenker, Econometrics in R: Past, present, and future, Journal of Statistical Software, vol.27, issue.1, 2008.

T. Zito, N. Wilbert, L. Wiskott, and P. Berkes, Modular toolkit for Data Processing (MDP): a Python data processing framework, Frontiers in Neuroinformatics, vol.2, issue.8, 2009.
DOI : 10.3389/neuro.11.008.2008