T. Bhavani, K. Latifur, A. Mamoun, and W. Lei, Design and Implementation of data mining tools. Data Mining Techniques and Applications, 2009.

C. Vercellis, Business Intelligence: Data Mining and Optimization for Decision Making, 2009.

R. E. Bellman, Dynamic Programming, 1957.

G. Linoff and M. Berry, Data mining techniques for marketing, sales and customer relationship management, 2004.

E. K. Burke and G. Kendall, Search Methodlogies: Introductory Tutorials in Optimization and Decision Support Techniques, 2005.

A. Chouchoulas and Q. Shen, Rough set-aided keyword reduction for text categorization, Applied Artificial Intelligence, vol.15, issue.9, pp.843-873, 2001.
DOI : 10.1080/088395101753210773

W. Moudani and F. Mora-camino, A dynamic approach for aircraft assignment and maintenance scheduling by airlines, Journal of Air Transport Management, vol.6, issue.4, pp.233-237, 2000.
DOI : 10.1016/S0969-6997(00)00011-9

A. P. Engelbrecht, Introduction to Computational Intelligence, 2003.
DOI : 10.1002/9780470512517.ch1

K. J. Ezawa and S. W. Norton, Constructing Bayesian networks to predict uncollectible telecommunications accounts, IEEE Expert, vol.11, issue.5, pp.45-51, 1996.
DOI : 10.1109/64.539016

F. Glover and M. Laguna, Tabu Search, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01389283

F. Glover, Future paths for integer programming and links to artificial intelligence, Computers & Operations Research, vol.13, issue.5, pp.533-549, 1986.
DOI : 10.1016/0305-0548(86)90048-1

F. Glover, Tabu Search???Part I, ORSA Journal on Computing, vol.1, issue.3, pp.190-206, 1989.
DOI : 10.1287/ijoc.1.3.190

F. Glover, Tabu Search???Part II, ORSA Journal on Computing, vol.2, issue.1, pp.4-32, 1990.
DOI : 10.1287/ijoc.2.1.4

A. Hedar and M. Fukushima, Tabu Search directed by direct search methods for nonlinear global optimization, European Journal of Operational Research, vol.170, issue.2, pp.329-349, 2006.
DOI : 10.1016/j.ejor.2004.05.033

A. Hedar, J. Wangy, and M. Fukushima, Tabu search for attribute reduction in rough set theory, Journal of Soft Computing -A Fusion of Foundations, Methodologies and Applications, 2008.
DOI : 10.1007/s00500-007-0260-1

W. Moudani and F. Mora-camino, Management of Bus Driver Duties using data mining, International Journal of Applied Metaheuristic Computing (IJAMC), vol.2, issue.2, 2011.

J. Jelonek, K. Krawiec, and R. Slowinski, ROUGH SET REDUCTION OF ATTRIBUTES AND THEIR DOMAINS FOR NEURAL NETWORKS, Computational Intelligence, vol.11, issue.5, pp.339-347, 1995.
DOI : 10.1111/j.1467-8640.1995.tb00036.x

R. Jensen and Q. Shen, A Rough Set-Aided System for Sorting WWW Bookmarks, Web Intelligence: Research and Development, pp.95-105, 2001.
DOI : 10.1007/3-540-45490-X_10

R. Jensen and Q. Shen, Finding rough set reducts with ant colony optimization, Proceedings of the 2003 UK Workshop on Computational Intelligence, pp.15-22, 2003.

R. Jensen and Q. Shen, Fuzzy???rough attribute reduction with application to web categorization, Fuzzy Sets and Systems, vol.141, issue.3, pp.469-485, 2004.
DOI : 10.1016/S0165-0114(03)00021-6

R. Jensen and Q. Shen, Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches, IEEE Transactions on Knowledge and Data Engineering, vol.16, issue.12, pp.1457-1471, 2004.
DOI : 10.1109/TKDE.2004.96

G. H. John, R. Kohavi, and K. Pfleger, Irrelevant Features and the Subset Selection Problem, Proceedings of 11th Intl. Conf. on Machine Learning, pp.121-129, 1994.
DOI : 10.1016/B978-1-55860-335-6.50023-4

K. Kira and L. A. , The Feature selection Problem: Traditional Methods and a New Algorithm, Proceedings of AAAI, pp.129-134, 1992.

A. Konar, Computational Intelligence: Principles, Techniques and Applications, 2005.
DOI : 10.1007/b138935

T. Y. Lin, Y. Y. Yao, and L. A. Zadeh, Data Mining, Rough Sets and Granular Computing, 2002.
DOI : 10.1007/978-3-7908-1791-1

H. Liu and R. Setiono, A probabilistic approach to feature selection: a filter solution, Proceedings of the 9th International conference on Industrial and Eng. Applications of AI and ES, pp.284-292, 1996.

H. Liu and R. Setiono, Feature selection and classification?A probabilistic wrapper approach, Proceedings of the 9th Intl. Conf. on Indust. and Eng. Applications of AI and ES, pp.419-424, 1996.

H. Liu and H. Motoda, Feature Extraction Construction and Selection: A Data mining Perspective, Kluwer International Series in Engineering and Computer Science, 1998.
DOI : 10.1007/978-1-4615-5725-8

M. Modrzejewski and M. , Feature selection using rough sets theory, Proceedings of the 11th International Conference on Machine Learning, pp.213-226, 1993.
DOI : 10.1007/3-540-56602-3_138

E. Orlowska, Incomplete Information: Rough Set Analysis, 1998.
DOI : 10.1007/978-3-7908-1888-8

B. Raman and T. R. Loerger, Instance-based filter for feature selection, Journal of Machine Learning Research, pp.1-23, 2002.

C. Rego and B. Alidaee, Metaheursitic Optimization via Memory and Evolution, 2005.

Z. Pawlak, Rough sets, International Journal of Computer & Information Sciences, vol.8, issue.3, pp.341-356, 1982.
DOI : 10.1007/BF01001956

Z. Pawlak, Rough Sets: Theoretical aspects of reasoning data, 1991.

D. Pyle, Business Modeling and Data Mining, 2003.

Q. Shen and A. Chouchoulas, A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems, Engineering Applications of Artificial Intelligence, vol.13, issue.3, pp.263-278, 2000.
DOI : 10.1016/S0952-1976(00)00010-5

R. W. Swiniarski and A. Skowron, Rough set methods in feature selection and recognition, Pattern Recognition Letters, vol.24, issue.6, pp.833-849, 2003.
DOI : 10.1016/S0167-8655(02)00196-4

S. Tan, A global search algorithm for attributes reduction Advances in Artificial Intelligence, LNAI 3339, pp.1004-1010, 2004.

K. Thangavel, Q. Shen, and A. Pethalakshmi, Application of Clustering for Feature selection based on rough set theory approach, AIML Journal, vol.6, issue.1, pp.19-27, 2006.

C. Traina, L. Wu, and C. Faloutsos, Fast Feature selection using the fractal dimension, Proceeding of the 15th Brazilian Symposium on Databases (SBBD), 2000.

L. Y. Zhai, L. P. Khoo, and S. C. Fok, Feature extraction using rough set theory and genetic algorithms???an application for the simplification of product quality evaluation, Computers & Industrial Engineering, vol.43, issue.4, pp.661-676, 2002.
DOI : 10.1016/S0360-8352(02)00131-6

N. Zhong and A. Skowron, A Rough Set-Based Knowledge Discovery Process, Intl. Journal of App. Mathematics and Computer Sciences, vol.11, issue.3, pp.603-619, 2001.

X. Hu, T. Y. Lin, and J. Jianchao, A New Computation Model for Rough Sets Based on Database Systems, Lecture Notes in Computer Science, vol.2737, pp.381-390, 2003.