
HAL Id: hal-01021590
https://enac.hal.science/hal-01021590

Submitted on 31 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancement of a data warehouse performance using
association rules technique

Walid Moudani, Mohammad Hussein, Mirna Moukhtar, Felix Mora-Camino

To cite this version:
Walid Moudani, Mohammad Hussein, Mirna Moukhtar, Felix Mora-Camino. Enhancement of a data
warehouse performance using association rules technique. International Journal of Computer Appli-
cations, 2011, 21 (7), pp 29-37. �hal-01021590�

https://enac.hal.science/hal-01021590
https://hal.archives-ouvertes.fr

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.7, May 2011

29

Enhancement of a Data Warehouse Performance using

Association Rules Technique

Walid Moudani
Lebanese University
Doctorate School of

Sciencess and
Technologies

Tripoli, Lebanon

Mohammad Hussein
Lebanese University
Doctorate School of

Sciencess and
Technologies

Tripoli, Lebanon

Mirna Moukhtar
Lebanese University
Doctorate School of

Sciencess and
Technologies

Tripoli, Lebanon

Félix Mora-Camino
Air Transportation Dept.,
ENAC/DGAC, 7 Avenue

Edouard Belin, 31055
Toulouse, France.

ABSTRACT
The data warehouse holds information management and turns it

into meaningful management information, from which, very

interesting patterns can be discovered by applying knowledge

discovery process. As the update of the Data Warehouse is not

too frequent, it is possible to improve query performance while

storing the data retrieved by them in a cache. However, the

most powerful systems have a small capacity to store the entire

database in memory cache. The caching chunks technique is

designed to keep in cache the query results in the form of

chunks of values, instead of storing them in large tables. In this

paper, we propose a new technique for caching

multidimensional queries based on association rules. Using this

technique will allow all users to enjoy the benefits of Data

Warehousing in the best manner, and also to improve

performance and also increase the use of the system while

reducing the response time. The technique is build using an

architecture comprising a data warehouse, a memory cache on

the server and a one on each user's machine, in which the

association rules and query results are stored. These results are

kept in the form of chunks to enjoy all the advantages of the

technique of fragmentation into chunks. This approach has been

implemented and tested over a real huge data followed by

displaying the results and analyzes.

Keywords
Data Warehouse, Data Mining, OLAP, Association Rules,

Cache based on chunks

1. INTRODUCTION
In the modern business environment, Business Intelligent

System should provide data access for managers, analyzers and

decision makers. Business Intelligent System has become a key

contributor to mark a significant competitive advantage for

companies. It includes a Data Warehouse (DW) environment

[9], a system for On Line Analytical Processing (OLAP), tools

for Data Mining (DM) [2, 12, 14, 15, 17], etc. Many companies

have adopted DWs from operational databases. Thus, the DW

associated to analysis tools OLAP are an effective solution for

business intelligence. These systems are based on the

multidimensional paradigm, which, based on the concepts of

dimension, fact, measurement and OLAP operators, enable a

multidimensional analysis of large amounts of data. There are

two types of DW: ROLAP in which data is represented in a

relational database and MOLAP in which data is represented in

multidimensional data cubes [1]. In this work, we focus on the

second one. The large size of most DWs leads to a significant

cost of queries processing and leads us to find a cache efficient

technique for reducing delay in multidimensional processing.

The DW stores information that is collected from multiple

heterogeneous information sources to answer complex queries

and analyze information [5, 6, 8, 10, 16]. It collects copies of

data from remote data sources and integrates this information

into a repository for reporting and monitoring of strategic

decisions. An OLAP system provides tools to explore and

navigate through data cubes to extract valuable information

[6]. Systems or applications of decision support running both

queries in multidimensional data using complex techniques, and

also use DM techniques to extract valuable information and

useful in the considered application domain. DM techniques

provide powerful extraction and knowledge discovery such as

Association Rules (ARs), classification, and segmentation,

etc. A DM algorithm is a well-defined procedure that takes

input data and produces output as templates [1]. The DM

algorithms allow the user to find partial information of great

importance from the DW. Nevertheless, OLAP is not capable of

explaining relationships that could exist in a DW. ARs are a

kind of DM techniques to find associations between data.

In this work, we present a new technique for caching

multidimensional queries. This technique is based on extracting

the necessary information based on ARs, caching the queries in

order to reduce the processing time of them. Also, we propose a

new replacement policy named MLAR, Multi-Layer caching

based on ARs. It is based on a combination of cache

replacement policies, already proposed in the literature with

ARs leading to improve replacement requests when the cache

becomes full. The remainder of the paper is organized as

follows. In Section 2, we describe the context and the related

works on caching. The section 3 contains a detailed explanation

of our caching technique by illustrating our policy MLAR.

Section 4 discusses the performance evaluation. Finally, in

section 5 we conclude and we describe future works.

2. CONTEXT AND RELATED

WORKS
This section is divided in two parts: in the first part, we present

the context of our work. The second part discusses the related

works.

2.1 Context
Businesses are often subjected to development and expansion

by continually creating branches and subsidiaries spread

geographically. Consequently, a single centralized DW may be

too costly or difficult to build [14, 15, 18]. Therefore, many

companies tend to use a number of smaller DWs, located at a

distance. So in order to answer the queries, the decision support

systems carry on the requested task by performing aggregation

operations on data stored on these small DWs which are located

either at the user node, or at the data server (Middle-Tier).

Usually, each node collects data independently. The major

problem of distributed OLAP system is the query processing

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.7, May 2011

30

cost. So we have a technique that reduces the response time for

distributed OLAP queries. Caching is an essential solution to

improve the performance of many applications since the

primarily use of repeated data is expensive, specifically in

computing and fetching data. Thus, by caching the data, the

application needs to calculate or retrieve the data once. When

data is queried, the application can retrieve data from the cache

instead of recalculating or fetching them from a DW located

remotely. Due to the fact that a small number of queries are of

fundamental importance and are most often requested, and the

fact that these queries are related to ARs that are most

frequently requested. Then it is efficient to store these rules in

the cache of the user (client cache), or even in the server cache

(Middle-Tier), so that these data are now easily accessible by all

users with a reduced response time. However, due to the large

volume of data requested by users through all possible queries

and across different levels of dimensions, it is more efficient to

store query results with the related ARs in the cache.

In the remainder of this paper we based on a example (Figure 1)

illustrating the drugs sales in a large pharmacy. In this example,

we considered three dimensions: Drugs, Branch, and Time, and

a fact table. The table 1 describes the dimensions and their

respective hierarchies. The model of the dimension hierarchy is

as follows:

di = dimension of order « i »; i = 1, , N

N = number of dimensions

Li = total number of levels for dimension di

Here, the level varies from 0 to li - 1. Level 0 indicates that the

dimension is aggregated at all. If the level value increase, the

concept of hierarchy is explored to view more detailed

information on one dimension. Table 1 shows the three

dimensions and their hierarchy levels used as a running

example in this work. This allows an OLAP decision maker to

display information of the sale at various levels and

combinations of dimensions in a hierarchy, and identify the

drugs/ Branch /time which present exceptional circumstances.

We present in the following dimensions of the considered DW

through a real data.

Drugs (Drug_key, Drug_Description, Drug_Category,

Drug_Brand)

Branch (Branch_key, Branch_Country, Branch_Region,

Branch_City)

Time (Time_key, Time_Year, Time_Quarter, Time_Month)

FactProfit (Time_key, Drug_Key, Branch_Key, Profit,

ProfitLevel)

Table 1. Dimensions’ hierarchies and their levels

 Drugs Branch Time

Level Dg_Key Br_Key Ti_Key

0 ALL ALL ALL

1 Dg_Category Br_Country Ti_Year

2 Dg_Brand Br_Region Ti_Quarter

3 Dg_Description Br_City Ti_Month

2.2 Related works to caching technique
The use of cache is widely deployed to minimize the expenses

incurred during the operations distributed OLAP [6, 7, 13, 18].

Thus, the cache can be used in OLAP systems to reduce

processing time. In this section, we present the importance of

caching OLAP queries, the chunk caching technique. This

technique introduced the decomposition of the

multidimensional space into chunks where each dimension is

divided into separate ranges [3].

Thus, a mapping structure called Domain Index is defined to

maintain the correspondence between a dimension value and its

ordinal number. The idea of using chunks comes from its utility

for systems that use MOLAP multidimensional arrays to

represent data. Thus, instead of storing a large table to a

particular row or column, it is broken into chunks and stored in

an appropriate chunked format [18, 19]. Distinct values for each

dimension are divided into ranges and the chunks are created

based on this division. In the chunk based-caching system,

query results, stored in cache, should be cut into chunks to be

cached. When a new query is requested, the chunks needed to

respond this request are determined. According to the contents

of the cache, the list of chunks is divided in two parts. A part is

extracted from the cache.

The other part consists of the missed chunks in the cache that

must be fetched and calculated from other data sources. It is

important to reduce the cost of a missed chunk. This means that

the missing chunks are to be calculated efficiently from other

data sources.

Consider the following query (Q1) which demands to know the

monthly rental of a Drug category, for the first two

quarters. (Between January and June) we consider that the

results of the query (Q1) are cached. Now, if we have two

queries Q2 and Q3 which are sought after Q1. Q2 demands the

sum of profits from the rental information for the months

between January and May, while Q3 demand the sum of profits

from the rental information for the months between April and

September.

To answer Q2 and Q3 (Figure 2), the query evaluator is

presented with two alternatives. The first solution is to evaluate

queries using query results cached while the second alternative

is to recover from original data sources. The traditional

approach of caching was that leads to cache the entire results of

the query. It analyzes the contents of the request to determine

whether a given query can be answered using the cache. For

example, Q2 can be fully evaluated using the cache because it is

contained in Q1. However, if we analyze the contents of the

query Q3, it cannot take advantage of cached results, despite the

fact that some partial results are cached, i.e., information rent

for the months of April, May and June To overcome the

drawbacks of caching query level, we need a mechanism to

determine if partial results for the query can be retrieved using

the cache. In addition, we need to decompose the query so that

a portion is evaluated entirely in the cache while the other is

delivered to remote data sources. A naive method to determine

if the partial results of a query are in the cache requires

overlapping the application requested with all queries

cached. The model chunk-based overcomes these problems by

dividing the multidimensional query space uniformly into

pieces, and then place them in cache. The query results are

contained in a whole number of chunks, because the pieces are

at the lowest level of granularity that caching query level can be

reused to compute the partial result of an incoming request.

Using a fast mapping between the constants of queries and the

number of chunks, we can determine all the pieces necessary to

fully answer a query. Since query results are associated with an

integer number of chunks, the replacement policy can benefit

from hosting the chunks to the difference of caching query

level.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.7, May 2011

31

Fig 2: Reusing of cache.

The advantages of Chunk caching approach can be summarized

as following: (i) Granularity of cache: Caching based chunks

instead of entire queries improves the granularity of caching,

(ii) Uniformity: The notion of regions semantically uniform in

the form of chunks of query allows a reuse less complex, (iii)

Closure property of chunks: The technique of chunking can be

applied to any level of aggregation. Consistency provides a

simple mapping between chunks at different levels of

aggregation, and (iv) Avoid redundant storage: If the cache is

used so that each query is cached in its entirety, although some

requests will have results that overlap with the results of other

queries. Replication of these partial results reduces the effective

memory available for caching. Therefore, the success rate of the

cache is negatively affected by reducing the advantage of

having a large cache.

3. DESCRIPTION OF THE

PROPOSED SOLUTION METHOD
In order to improve the response time for users on different

distributed machines based on three-level architecture

composed of 3 layers: an End user layer (client machine), a

layer of data processing (OLAP Server) and a layer of data

storage (Data Warehouse Server). We tried to capture all the

benefits of the caching techniques, and at the same time

preserve the performance of the system, while trying to

minimize the cost in terms of response time as shown in our

study. This allowed us to combine firstly, the benefits of

caching query results into chunks, and secondly, the use of a

cache replacement algorithm based on combined policies. The

principle is to keep only in cache the most requested ARs by

users (including their associated results) and maintain the data

source up to date as much as possible. The technique of ARs

uses large itemset property. It is easily parallelized and easy to

implement. Moreover, it permits to select the appropriate level

of information needed by most decision makers. The search

process is interleaved between the examinations of ARs, and

then determines a drill-down path to a more appropriate level of

detail. The remainder of this section is organized as following:

firstly, we describe the system architecture and its functions.

Secondly, we introduce the database schema to storing the ARs.

Thirdly, we present the Multi-layers caching mechanism and

the replacement policy.

3.1 Description of the System

architecture and its functions
We present the three-tier architecture shown in Figure 3. The

system consists of a DW, a middle-tier server and remote

distributed users. OLAP data are stored in the DW, as well as

ARs. As multidimensional queries require non-negligible

execution time, it became necessary to reuse the results already

calculated and stored in a caching based on multilayer

mechanism instead of sending these queries to the DW. The

middle tier server is connected to the DW via a wired

connection and acts as a communication link between the DW

and the client computers. The middle tier server and the client

machine are equipped of cache to store the ARs related to

requested queries and the associated results.

At a new request by a user for a multidimensional query or an

AR, this request is sent to the cache of the user to locate the

requested information (if any). In case of existence, the cache

sends the requested information to the user in an access time

remarkably reduced. If the information does not exist in the

cache of the user, the request will be sent to the next level of

architecture that corresponds to the intermediate

server. Similarly, the searched information corresponding to

this request is done first in the intermediate server's cache. In

case of existence, it transmits the information found at the

intermediate cache server to the user who asked this query in a

short time. However, a copy of the ARs and its results are

stored in the cache of the user. In cases where no information is

found in the cache of the intermediary server then the request is

Fig 1: Drugs sales schema

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.7, May 2011

32

forwarded to the DW where it processes the request and sends

its results to the user via the intermediary server. This keeps a

copy of the AR and its associated results in the cache of the user

and middle-their server. Recovery time of the results was

significantly higher compared to the case where information is

found in the caches associated with other levels of the

architecture. User computers include a cache that serves

reducing the access time of a request.

To manage the cache in best manner, we propose a description

of the replacement policies that have been adopted in

literature. Thus, they can replace queries already cached when

the cache becomes full. In general, the replacement policies

used are conventional, such as: Least Recently Used (LRU),

Least Frequently Used (LFU), Adaptive Replacement Cache

(ARC), etc. On the other hand, we note here that only 20% of

queries are solicited about 80% of the time, so in our system,

cache users retain only the queries and its corresponding

ARs. In our research, we propose a combined replacement

policy, called Multiple Layers Association Rules (MLAR), in

order to manage the cache. We are working on the issue of

caching ARs for users, data consistency, and the fact to

maintain continuous data for all users to provide more reliable

reports.

We chose the chunk technique to store the query results in the

cache, because even the most powerful systems cannot replicate

the contents of all the selected tables from data sources. On the

other hand, the use of sub-tables for the cache may be an

effective alternative by caching only the interesting parts of data

sources‟ tables. For all these reasons, we introduced the use of

chunk based cache strategy. In the schema of chunk based

cache, the query results to be stored in the cache are broken into

pieces and the pieces are cached. When a new application is

requested, the pieces needed to respond to this request are

determined. The combination of all these techniques with three-

level architecture to enjoy all its benefits, will allow building an

OLAP system fairly reliable and consistent.

The steps of our methodology can be summarized as follows:

 Generation of ARs in DW and keep only the interesting

rules by eliminating the non-large items.

 Apply an intelligent algorithm to cache (of the user and/or

Server OLAP) ARs highly requested.

 Cache ARs and their associated results.

 Applying a replacement policy by using a combined

threshold indicators (time, Access Frequency, and positive

gain of rules) to keep in the cache the results and rules

which are the high updated

3.2 Database schema to storing the AR
We generate the ARs and stored them in the DW with

multidimensional data according to schema described in table 2.

The mapping the ARs to queries is discussed in the literature in

several woks [7, 11]. In the remainder of this section, we

present the storage process of two following rules:

Rule 1: (Drug_Description = 'Doliprane')

→ Profit = “Low”

Rule 2: (Drug_Description = 'Flagyl', Year = '1995')

→ Profit = “Low”

Here, the attribute Rule_ID is a unique identifier assigned to

each rule of the association. Rule_Type identifies whether it is

antecedent (ANT) or consequent (CONS). Attr_Type

distinguish a dimension of a measure (D/M). Attr_ID /

Attr_Level / Attr_Value respectively store the ID attribute in

the dimension / level of the attribute / value of the

attribute.Attr_ID. For example, the attribute of ID 101 is a drug

with name is „Doliprane‟ having level “3” and present a low

profit.

3.3 Multi-layers caching mechanism for

users
Initially, a user has several ARs available in his cache, and after

selecting a rule looking interesting to him, he can know the data

represented by this AR. This request is transmitted to the

middle-tier server as an expression of OLAP query and query

result is returned to the user's computer. Our caching

mechanism stores the multi-layer ARs and details of their

queries in relation. These layers of caching correspond to three

different types of information that are interrelated: (i) the ARs

generated, (ii) the terms of the corresponding multidimensional

query and (iii) the results of the query. Accordingly, the three

layers in our caching mechanism correspond to the ARs, query

expressions and the result set, as shown in (Figure 4). We cache

the ARs that are viewed by users in Layer-1. Layer-2 is

responsible for caching the semantics of the OLAP query (that

is, the query expressions) corresponding to the current rule.

In layer 3, we store the query results corresponding to the

OLAP query expressions. It is important to note that the

caching mechanism in multi-layer and three-tier architecture of

our system layer-1, layer-2 and layer-3 are located on the

middle-tier server and computer‟s users.

Fig 3 : Three-tier architecture system

Data

Warehouse

Database

Connection
Wireless HTTP

Connection

Middle-Tier

Server

Client

Fig 4: Multi-layers cache

1

(0, N)

Layer – 1

Association Rule Cache

Layer – 2

Query Expression Cache

Layer – 3

Query Results Cache

1

1

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.7, May 2011

33

3.3.1 Method for caching the association rules:

Layer 1
When a user searches for an association rule rcurr, the

monitoring mechanism is to inquire whether the rule is in

Layer-1 of the user. If the rule rcurr is found, it will be

presented to the user associated with the results; otherwise, the

request is transferred to the intermediate server layer (Layer-

2). The server searches rcurr in its own cache at the layer-2 and

transfers it to the cache of the user (layer-1) if rcurr is found;

otherwise the request reaches the DW, which will produce the

rule and send it to the server middle tier, which then sends it to

the cache of the user to use it. Before transferring the rule on

the user's computer, the intermediate server caches rcurr in its

cache. If space is insufficient in its cache, the appropriate rules

are deleted in accordance with our replacement policy and rcurr

is sent in the cache.

Each cached rule is associated with some useful information

such as: the date of creation, lift of requested ARs and the

frequency of requests, in order to be used in the replacement

algorithm. Similar to the server, the same events occur in the

layer-1 at the user's computer cache.

3.3.2 Caching semantics of the query and its

results: Layers 2 and 3
Since the layer-2 and layer-3 are mutually dependent, we

consider them together in our discussion. When a user requests

data corresponding to a multidimensional query Q (rcurr), it is

implicit that the user has already selected the corresponding

AR, caching at the time the observation, so the rule_id that is

sent to the server identifies reasonably the general rule, while

minimizing the amount of information to be transmitted.

When a user requests an OLAP query Q (rcurr), the layer-2 is

searched first. If it is found, the corresponding query results are

retrieved from the layer-3 and presented to the user; otherwise,

the demand shifts on the server or even the DW and Q (rcurr)

are sent to the server, then the user's computer that can invoke

replacement policy. It is important to note that our caching

mechanism at various levels identifies the characteristics of the

user computer and middle-tier server: On the computer of the

user, the cached data represent only the requests of this user,

while on the server; they represent the overall demand for many

users.

3.4 Replacement Policy
Our replacement policy is used when there is not enough space

in the cache to hold the data requested. To store an AR in the

layer-1 where the free space is insufficient, we must first seek

the candidate rule to be deleted. This is based on three

parameters: date of creation of the AR (TIME_STAMP), the

frequency of access to this rule (Frequency_Access) and the lift

of an AR existing in the cache (LIFT). The principle of

operation of the first parameter, date of creation of the AR

(TIME_STAMP), is to keep cached the most recent rules. As

for the second parameter, frequency of access to this rule

(Frequency_Access), it is to remove from the cache the less

frequently used rules. Finally, the third parameter, the lift of an

AR, we keep the ARs where the antecedents and consequents

are positively dependent. Having identified and removed the

Victim(s) Association Rule(s) (VAR), which exist in the cache

according to the used policy, to obtain the required space in

memory cache, the new rule becomes a member of the cache.

4. Performance evaluation
The purpose of this section is to present the results of

performance analysis of the proposed replacement algorithm

(MLAR) through a comparison with the results of algorithms

Adaptive Replacement Cache (ARC) proposed in the

literature. This section is organized as follows: firstly, we

describe the experimental platform and data set. Secondly, we

describe and discuss the results of performance evaluation.

4.1 Experimental platform
To simulate our proposed algorithm, we implemented our own

application using the Visual Basic.NET programming language

with a database in SQL Server 2005. In order to evaluate the

performance of the proposed methodology, we perform a

numerical comparison based on the example described in the

section 2.1. We consider two platforms:

Platform 1 Platform 2

Server Cache Size = 600 Server Cache Size = 300

Client Cache Size = 500 Client Cache Size = 200

Access Frequency

Threshold = 3

Access Frequency Threshold

= 3

Time Threshold = 30 Time Threshold = 20

4.2 Results performance evaluation
In this section, we perform a numerical comparison of our

methodology. We are interested in our comparison to analyze

some criteria keys such as: Request Search time of the query

and Replacement policy.

4.2.1 Time analysis of the search query
In this section we present and compare the searched query time

of the proposed method and the convention method proposed in

the literature. We realize two evaluations under two different

platforms: platform 1 and platform 2.

4.2.1.1 First evaluation
This evaluation is realized under platform 1. The following

figure (Figure 5) contains a comparison of the performed results

of our proposed method. The results obtained by our method are

encouraging compared to those obtained in the case where there

Rule_

ID

Rule_

Type

Attr_

Type

Attr_

ID

Attr_

Lev
Attr_Value Support Confidence

Time_

Stamp

Access_

Frequency
Lift

1 ANT D 101 3 Doliprane 40.5 26.6 11/06/2009 5 0.6

1 CONS M 201 0 Low 40.5 26.6 11/06/2009 5 0.6

2 ANT D 101 3 Flagyl 34.1 11.75 14/06/2010 4 1.7

2 ANT D 401 1 1995 34.1 11.75 14/06/2010 4 1.7

2 CONS M 201 0 Low 34.1 11.75 14/06/2010 4 1.7

Table 2 Table storing the ARs

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.7, May 2011

34

is no cache. We note that the search time of the query was

reduced after the implementation of our method with the cache.

The obtained results are presented in the following table

showing the response time (RT) associated to each case of

query.

4.2.1.2 Second Evaluation
This evaluation is realized under platform 2. It brought an

example of 'Chunk Based Cache'. The following table shows

that the technique “Chunk Based Cache” has improved the

response time of queries. This example is presented in the last

three lines. The dimension Region = 'Haute-Garonne’ in our

DW consists of two Cities 'Toulouse' and 'Auch‟.

We supplied the details of the City 'Toulouse' first (Q 5.a) and

then the information from the Region 'Haute Garonne'. With the

use of technology of 'Chunk Based Cache', the query (Q 5.b) is

half the cache of the client. It consists of gathering the

information related to the city of „Auch‟ which represents the

remainder part relates to information concerning the region of

'Haute-Garonne‟. We note the effectiveness of this technique

(Figure 6). On the other hand, we note that by decreasing the

size of the cache, the response time of the query increases

because of the replacement algorithm‟s call. The obtained

results are presented in the following figure (Figure 6).

4.2.2 Analysis of the two replacement policies:

« MLAR» and « ARC »
The following figure (Figure 7) contains a comparison of the

performance results of the two policies "MLAR" AND

"ARC". The results show that our policy "MLAR" has reduced

the replacement time if there is a need for replacement of a

single query. When there is a need to replace several queries,

the method "ARC" is more efficient. For example, the query (Q

6) requests a replacement of a single query and generates less

computing time using MLAR than ARC method. The query (Q

10) requests a replacement of 6 queries and generates more

computing time using MLAR than ARC method.

4.3 Discussion
Having tested our methodology under different scenarios, we

shall evaluate the performance of its methodology. We note the

following points: (1) Search time of a query is reduced after

caching this query; (2) Reducing the search time of the query by

using the technique of chunk based-cache; (3) Increasing the

cache size leads to increased the search time of the query; and

(4) The replacement time of our algorithm, MLAR is much

better than the algorithm ARC, when the number of replaced

queries is equal to 1.

Queries

Description

Q 1.a (Time_Year (1) = 2006) & (Drug_Description (3) = Sirop) & (Branch_City (3) = Lyon)

Q 1.b (Time_Year (1) = 2006) & (Drug_Description (3) = Sirop) & (Branch_City (3) = Lyon)

Q 2.a (Time_Year (1) = 2007) & (Drug_Description (3) = Sirop) & (Branch_Region (2) = Paris)

Q 2.b (Time_Year (1) = 2007) & (Drug_Description (3) = Sirop) & (Branch_Region (2) = Paris)

Q 3.a (Time_Year (1) = 2008) & (Drug_Category (1) = Young) & (Branch_City (3) = Auch)

Q 3.b (Time_Year (1) = 2008) & (Drug_Category (1) = Young) & (Branch_City (3) = Auch)

Q 4.a (Time_Year (1) = 2006) & (Drug_Category (1) = Child) & (Branch_City (3) = Auch)

Q 4.b (Time_Year (1) = 2006) & (Drug_Category (1) = Child) & (Branch_City (3) = Auch)

Fig 5: Table of queries and its corresponding response time

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.7, May 2011

35

5. CONCLUSION AND PERSPECTIVES
The aim of our research was to present for multi-users the

ability to discover the knowledge through the use of ARs in

order to make tactical decisions. We presented a new technique

that uses the three-tier architecture to enable caching the most

requested ARs in two different levels: the user and the server.

In this work, we proposed a methodology that combines the

OLAP technology with the ARs using the technique of chunk

based-cache following a Three-Tier Architecture to enable all

users enjoy the benefits of data warehousing in the best manner

to improve the performance and also to increase the use of the

system while reducing the response time. Using three-tier

architecture ensures the hierarchical structure of our system to

be guided navigation through it.

We have applied a technique of management and replacement

of the cache based on criteria such as frequency of access, the

date of use of any rules, and the contributions of rules highly

positive. This work has helped to achieve the following points:

(1) We presented a caching algorithm of ARs most sought in an

effective manner; (2) We have demonstrated the effectiveness

of our algorithm in reducing the response time through a

performance evaluation; (3) We proved algorithms in the

literature to give effective results, such as the Apriori algorithm

in order to generate the ARs, and the combination of several

criteria to better manage the replacement policy and

eliminate unwanted chunks; and (4) We used a three-tier

architecture to improve system utilization.

To manage the replacement policy, we have proposed that ARs

should be thrown out of the two caches based on their

frequency of use, date and time of use, and finally the positive

contribution of the rule. The first criterion ensures the

maintenance of rules most wanted on the fact that only a few

queries are executed the most and are most relevant for

reporting tactics. The second criterion ensures the consistency

of the values contained in the tables over time. The latter

criterion ensures the maintenance of rules providing the most

interest. Note here that the cache server allows all users to

benefit from the ARs in greatest demand. In addition to the ARs

and caching, we have tried to enjoy a chunk based technique

which is a reliable technique. We have evaluated our

application by analyzing different data sets by changing the

cache sizes to ensure the reliability of our approach by

comparing its optimal resolution with the conventional

technique. This comparison highlighted the benefits of our

work, demonstrating the decrease in response time. In addition,

the evaluation showed that with the use of our new system, it

can provide reliable and updated data.

We have deduced that the use of such an integrated system

provides a framework that can handle many problems in the

area of OLAP systems while providing a reduction in response

time. Nevertheless, our technique is based on using several

other techniques that we could not test all their effectiveness

because of the complexity of their implementation. We tried to

simulate their work which was obtained from such

assessments.

Query

Description

Q 1.a (Time_Year (1) = 2006) & (Drug_Description (3) = Sirop) & (Branch_City (3) = Lyon)

Q 1.b (Time_Year (1) = 2006) & (Drug_Description (3) = Sirop) & (Branch_City (3) = Lyon)

Q 2.a (Time_Year (1) = 2007) & (Drug_Description (3) = Sirop) & (Branch_ Region (2)= Paris)

Q 2.b (Time_Year (1) = 2007) & (Drug_Description (3) = Sirop) & (Branch_ Region (2) = Paris)

Q 3.a (Time_Year (1) = 2008) & (Drug_Category(1) = Young) & (Branch_ City (3) = Toulouse)

Q 3.b (Time_Year (1) = 2008) & (Drug_Category(1) = Young) & (Branch_ City (3) = Toulouse)

Q 4.a (Time_Year (1) = 2006) & (Drug_Category(1) = Child) & (Branch_ City (3) = Toulouse)

Q 4.b (Time_Year (1) = 2006) & (Drug_Category(1) = Child) & (Branch_ City (3) = Toulouse)

Q 5.a (Time_Year (1) = 2006) & (Drug_Description (3) = Doliprane) & (Branch_ City (3) = Toulouse)

Q 5.b (Time_Year (1) = 2006) & (Drug_Description (3) = Doliprane) & (Branch_ Region (2) = Haute Garonne)

Q 5.c (Time_Year (1) = 2006) & (Drug_Description (3) = Doliprane) & (Branch_ Region (2)= Haute Garonne)

3
.0

9
3

0
.0

3
2

1
.5

7
8

0
.0

1
6

0
.6

2
5 0
.0

1
6

0
.7 0

.0
3

0
.6

7 0
.1

5
6

0
.0

1
6

2
.9

6
8

1
.2

6
5

1
.4

2
2

0
.8

0
.3

1
2

0
.2

1
2

0
.5

3 0
.4 0

.2

0
.2

3
4

0
.2

0
4

0

0.5

1

1.5

2

2.5

3

3.5

Response time using MLAR (sec.) Response time using conventional methodology (sec.)

Fig 6: Example of queries and its corresponding response time using the technique of chunk caching

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.7, May 2011

36

In addition, we could not test the effectiveness of our system in

terms of the user over a distributed network with true multi-

levels architecture. We can try to improve our work and

minimize its limitations. First, we can consider using other

methods of DM such as clustering and classification rather than

ARs. Another limitation of our study is that there is always the

possibility of having a multitude of incoming data that may

exceed the capacity of the cache. We confronted these cases

when we tried to use the standard "ALL" for aggregation in two

dimensions. It would take too long to transmit large amounts of

data in the cache table, so we chose to ignore these bad

scenarios.

In perspective, it is expected to complete testing and full

integration of our methodology on an integrated network, using

all resources to be able to test its effectiveness in all

circumstances. Secondly, we propose to integrate our proposed

technique to cover any business. In particular, our work can be

extended to cover the proxy cache because it requires no

extension of the HTML protocol or changes to servers, in order

to reduce the response time for Web users.

6. REFERENCES
[1] Agraval, R. and Srikant, R. 1994. Fast Algorithms for

Mining Association Rules. Proc. Of International

Conference on Very Large Databases, pp.487-499.

[2] Awad, M. and Latifur, K. 2009. Design and

Implementation of data mining tools.

[3] Deshpande, P., Ramasamy, K., Shukla, A., and Naughton,

J. 1998. Caching Multidimensional Queries using chunks,

SIGMOD Conference.

[4] Fangling, L., Yubin, B., Ge, Y. , Daling, W., and

Yuntao, L. 2006. An Efficient Indexing Technique for

Computing High Dimensional Data Cubes. Lecture Notes

in Computer Science, Springer Berlin, Volume 4016, pp.

557-568.

[5] Hang, K. and Kopriva, 2006. Kernel Based Algorithms

For Mining Huge Data Sets, Springer-Verlag.

[6] Keller, A. M., and Basu, J. 1996. A predicate-based

caching scheme for client-server database architectures.

VLDB Journal, 5(1), pp.35-47.

[7] Kumar, N., Gangopadhyay, A., and Karabatis, G. 2007.

Supporting mobile decision making with association rules

and multi layered caching. Decision Support Systems,

Vol. 43, Issue 1, pp. 16-30.

[8] Inmon, W.H. and Kelly, C. 1993. Developping the Data

Warehouse. QED Publishing Group, Boston.

[9] Inmon, W.H. 1997. Building the Data Warehouse. Second

Edition, John Wiley and Sons.

[10] Imhoff, C., Galemmo, N., and Geiger, J.G. 2003.

Mastering Data Warehouse Design: Relational and

Dimensional Techniques. Published by Wiley Publishing,

Inc., Indianapolis, Indiana.

[11] Meo, R. and Ceri, S. 1996. A new SQL-like operator for

mining association rules. Proc. of 22th International Conf.

on Very Large Data Bases, September 3-6, 1996, India.

[12] Pyle, D. and Kaufmann, M. 2003. Business Modeling and

Data Mining.

Query

Description # of Repalcement

Q 6 (Drug_Description = ’Doliprane’, Time_Year = ’2006’, Profit = ’High’) 1

Q 7 (Time_Year = ’2010’, Profit = ’Low’)

1

Q 8 (Time_Year = ’2007’, Profit = ’Low’) 1

Q 9 (Drug_Description = ’Flagyl’, Profit = ’Low’) 1

Q 10 (Drug_Description = ’Colchicine’, Profit = ’Low’)

6

Q 11 (Drug_ Description = ’Doliprane’, Time_Year = ’2004’, Profit = ’High’) 3

Q 12 (Time_Year = ’2010’, Profit =’Medium’)

3

Fig 7: Comparison of the MLAR and ARC using the replacement algorithm

0
.0

3
2

0
.0

1
6

0
.0

3
2

0
.0

4
6

0
.2

1
2

0
.1

1
8

0
.1

0
9

0
.0

7
8

0
.0

6
6

0
.0

9
3

0
.0

7
8

0
.1

0
5 0
.0

3
1

0
.0

3
1

0
0.05

0.1
0.15

0.2
0.25

"1" "1" "1" "1" "6" "3" "3"

Q 6 Q 7 Q 8 Q 9 Q 10 Q 11 Q 12

Requested Time using MLAR Requested Time using ARC

http://www.springerlink.com/content/105633/?p=0e67422b684e452888a0bf90abd3735c&pi=0
http://www.springerlink.com/content/105633/?p=0e67422b684e452888a0bf90abd3735c&pi=0
http://www.springerlink.com/content/105633/?p=0e67422b684e452888a0bf90abd3735c&pi=0
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235878%232007%23999569998%23641610%23FLA%23&_cdi=5878&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c61a4ff87549eeae9b3cde9f1b35fe9d

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.7, May 2011

37

[13] Scheuermann, P., Shim, J., and Vingralek, R. 1996.

WATCHMAN: A Data Warehouse Intelligent Cache

Manager, Proceedings of the VLDB.

[14] Seshadri, S., Cooper, B.F., and Liu, L. 2005. CubeCache:

Efficient and Scalable Processing of OLAP Aggregation

Queries in a Peer-to-Peer Network, Proc. of IEEE

INFOCOM.

[15] Vercellis, C. 2009. Business Intelligence: Data Mining

and Optimization for Decision Making.

[16] Widom, J. 1995. Research Problems in Data Warehouse.

Proc. Of the fourth International Conference on

Information and knowledge Management, Baltimore,

Maryland, pp.25-30.

[17] Witten, I.W. and Eibe F. 2005. Data mining: Practical

machine learning tools and techniques.

[18] Ying, F. 2004. Range CUBE: Efficient Cube

Computation by Exploiting Data Correlation. Proc. of the

20th ICDE Conference.

[19] Zhao, Y., Deshpande, P., and Naughton, J. 1997. An-

array based algorithm for simultaneous Multidimensional

aggregates, Proceedins ACM SIGMOD Intl. Conf. on

management of Data, p.159-170.

