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Abstract

Mean gain scores for cognitive ability tests between two sessions in a selection setting are

now a robust finding, yet not fully understood. Many authors do not attribute such gain

scores to an increase in the target abilities. Our approach consists of testing a longitudinal

SEM model suitable to this view. We propose to model the scores’ changes of a battery of

tests between two sessions with a single factor, namely the change in the situational

component of the scores. The situational component encompasses all effects due to the

specificity of the state of the person in the current situation (e.g., anxiety level, tiredness,

test-taking practice) and is allowed to vary from one session to another. By definition, this

single component is supposed to influence all tests at a given session. In particular cases

such as high-stake selection settings, where applicants are likely to train themselves before

retaking the tests, situational factors might even suffice to explain mean score increases.

Empirically, our latent change model closely fitted the scores of 752 applicants for entry

into the French Aircraft Pilot Training, gathered on a set of three tests (visual perception,

mechanical comprehension, and selective attention). Gain scores of moderate to strong

effect sizes could be explained by common situational effects, with no need for admitting

change on ability components. Therefore, gain scores may be understood as

construct-irrelevant changes.
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Situational Effects May Account for Gain Scores in Cognitive

Ability Testing: A Longitudinal SEM Approach

The Issue of Gain Scores

Since the beginning of the 20th century, cognitive ability tests are widely used in

military and civil organizations for the selection of adult applicants (Domino & Domino,

2006). As selection rates are usually low (far more applicants than selected people), in case

of failure on a first testing session, many organizations allow applicants to retake the tests

(Lievens, Reeve, & Heggestad, 2007; Lievens, Buyse, & Sackett, 2005). As shown by

numerous test-retest studies in the field, substantive mean gain scores can be expected

(e.g., Hausknecht, Trevor, & Farr, 2002; Kulik, Kulik, & Bangert-Drowns, 1984). A recent

meta-analysis (Hausknecht, Halpert, Di Paolo, & Moriarty Gerrard, 2007) revealed a mean

effect size of +0.26 standard deviation from one test administration to the next. Finding a

proper interpretation of gain scores remains an issue.

Investigating Gain Scores

We will review current approaches to gain scores before presenting our approach

based on longitudinal true-score modeling. First of all, we put forward one of the main

assumptions of this paper, namely the temporal stability of broad cognitive abilities within

a short time interval like one year.

Broad cognitive abilities stability. Concerning human cognitive abilities, there is a

relative consensus about Carroll (1993)’s three-stratum hierarchical model:

1. general factor g, defined as the first factor extracted after factor analysis

conducted on a battery of mental ability tests,
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2. broad abilities (also named "stratum II"), defined as very general abilities like

fluid intelligence, crystallized intelligence, general memory and learning, broad visual

perception, broad auditory perception, broad retrieval ability, broad cognitive speediness

and processing speed,

3. narrow abilities (also named "stratum I"), each being a specific component of a

broad ability (e.g., sequential reasoning, induction, quantitative reasoning, and Piagetian

reasoning are related to fluid intelligence).

It is generally assumed that, in the absence of any specific intervention (e.g.,

learning, practice, coaching, etc.), broad cognitive ability rankings are relatively stable

from one age to another (Carroll, 1993, p. 662). Second, inter-individual differences in

mental abilities are supposed to reach a fairly high level of stabilization by early

adolescence (Dixon, Kramer, & Baltes, 1985; Jensen, 1998). Therefore cognitive abilities of

young adults are supposed to have reached a plateau. In this case, or when the time

interval between two assessments is small compared to life-span (e.g., one year), the

problem is to explain the mean gain scores observed after retesting (Hausknecht et al.,

2007).

Current approaches to gain scores. Many authors consider that gain scores in

cognitive ability testing, even after coaching or practice, are not necessarily related to an

increase of the assessed abilities (Anastasi, 1981; Cole, 1982; Jensen, 1998; Snow, 1982;

Sternberg, Ketron, & Powell, 1982; Lubinski, 2000). The gain scores could be due to an

increase of “test-wiseness”, test-familiarity, motivation, self-confidence, or sheer test-taking

practice and/or a reduction of stress or anxiety. In reasoning tasks for instance, Roberts

and Newton (2003) identified task-specific short-cut strategies that could reduce effort and

stress thus increasing performances.

Considering a variety of tests, Jensen (1998) investigated how the mean gain score

observed on a test relates to the g-loading of that test, and found a negative correlation.
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Thus, the more a test is g-loaded, the less it is likely to allow for gain scores. In a recent

meta-analysis of 64 test-retest studies using IQ batteries, te Nijenhuis, van Vianen, and

van der Flier (2007) replicated this finding. Moreover, Jensen discarded the possibility that

variability in mean gain scores observed through a range of various tests over various time

lags would be related to the g-loadings of these tests, which suggests that mean gain scores

are not associated with g.

Recently, other authors have studied the test-retest effects obtained with a battery

of tests, through the test of measurement invariance hypotheses (Reeve & Lam, 2005;

Lievens et al., 2007). Their conclusions were mixed, supporting both structural invariance

(Reeve & Lam, 2005) or non-invariance (Lievens et al., 2007). Neither Jensen’s nor Reeves

et al.’s and Lievens et al.’s approaches focus on the structure of individual change effects,

however. Our own approach is an attempt to elaborate and test a longitudinal model that

specifies the structure of individual test-retest increases on a battery of tests.

A Longitudinal True-Score Approach to Gain Scores

Assuming the Classical Test Theory decomposition of the observed-score variable

into a true-score variable and an error variable (Lord & Novick, 1968), if the

regression-to-the-mean effect is negligible, one cannot explain gain scores by measurement

error (e.g. Lievens et al., 2005), since the error variable has a null expectation (e.g., Lord

& Novick, 1968; Steyer, 1989; Zimmerman, 1975).1 Thus, gain scores are true gain scores.

The true score refers substantively to a construct-relevant component (linked with the

target ability) and to a construct-irrelevant component (with no link with the target

ability level), i.e., ‘true’ does not necessarily mean ‘construct relevant’ (Borsboom &

Mellenbergh, 2002; Zumbo & Rupp, 2004).

The key idea of the present approach is to model the construct-irrelevant component

of the true score of a test (re)taker as an individual situational effect. Situational effects
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include all effects due to the specificity of the situation in which the person takes the test

and which induces a given state of the person. To illustrate how this notion applies to true

scores, let us take Jensen’s example of the indirect height measure through the shadow

length of a person in the sunlight (1998, p. 312). Depending on the time of day, for a given

height, the shadow will have a different length. Thus the time of the measurement is a

situational factor. Measuring the shadow height of a person twice, but at different times of

day, different shadow lengths will be found, although the person’s height did not change.

Analogously, test-retest gain scores may be interpreted as changes in situational effects on

the person’s states, while the cognitive traits remain stable.

Situational effects were first formalized within the SEM framework in the Latent

State-Trait Theory (Steyer, Ferring, & Schmitt, 1992; Steyer, Schmitt, & Eid, 1999). This

theory states that any test score measures characteristics of the person (traits), but also

measures characteristics of the situation and characteristics of the interaction between

person and situation. Taken together these factors create a psychological state specific to

the situation to which the person is exposed. Following this theory, a test never measures

trait differences only but also individual differences due to situational effects.

Within the context of testing, there could be some individual situational features

common to every test in Session 1: anxiety, stress, self-confidence, test familiarity level,

general test-taking practice, and the like. Those common features may change to some

extent from Session 1 to Session 2. This temporal change would be common to all tests

because it would be part of the situation to which participants are exposed to rather than

specific to any single test.2 Following the preceding “shadow-illustration”, let us imagine a

battery of height measures that are taken at a given time of day (e.g., height of the head,

of the body, of the arm). Taking the same measures six hours later the next day, change

observed for the head height is linearly related to change observed for body height.

To our knowledge, the possibility that change in situational effects could account for
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individual gain scores has not been investigated in previous research. In the sequel, we

investigate how far one can go using the situational effects view as an account for gain

scores effects.

Elaborating such a view requires some mathematical developments. We begin by

formally analyzing the test scores supplied by a battery of tests in a test-retest design,

which allows for the definition of the concept of a reliable measurement artifact, in

contrast to the reliable construct relevant component of the true score. Then, we identify

sufficient conditions in the structure of the situational effects for deducing testable

statistical consequences through SEM. Finally, we test the modeling on data from a sample

of test retakers, applicants for entry into French Aircraft Pilot Training.

Decomposing Cognitive Ability Test Scores

We now present a SEM decomposition of cognitive ability test scores. This

decomposition is a necessary step for the purpose of testing the hypothesis. However, the

reader who is not familiar with SEM may skip to the next section.

Considering Yit the test-score variable observed with test i at time t, where i indexes

a number of cognitive ability tests and t ∈ {1, 2} denotes the test and retest sessions, the

usual true-score decomposition is

Yit = τit + εit, (1)

where τit and εit denote the true-score and measurement error variables, respectively. Let

the true scores associated with scores on the test i at time t be defined as the expectations

of the test scores when subjects are measured with the test i at time t. Thus, the test

score is thought of as a probabilistic event, and measurement error represents the

stochastic component of the measurement experience.

Firstly, we consider two construct relevant and reliable sources of inter-individual

variations, namely the standing on g, the general cognitive ability as defined in the g factor
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literature, and the standing on ai, the cognitive ability which is specifically measured by

the test i (Carroll, 1993).

Secondly, we define a third component sit, representing all reliable inter-individual

variations that do not pertain to the ability the test i is purported to measure. Test

anxiety, the degree of familiarity with the test, emotional or attentional transient

dispositions due to real-life events around the testing session, etc., are substantive factors

entering the third component sit. Tautologically, the situational effects express as follows:

sit ≡ τit − [(αi + βi · g) + ai], (2)

where ≡ denotes equality by definition, and the coefficients αi and βi are used to allow g

to predict scores on the tests of the battery specifically. As the paper’s purpose is to test

the plausibility of retest gain scores’ explanation through latent change of situational

factors only, we assume the variances on the g and the ai components are constant across

situations; hence, the g-loadings βi are assumed to be constant across situations.

Consequences of the Test Scores Decomposition

A first consequence of the true-score decomposition is that the situational

component is allowed to have a non-null mean, that is, to act as a systematic bias with

respect to the construct relevant component (αi + βi · g) + ai. Thus, the observed score yit

of any person suffers from a random bias, i.e., measurement error, and from a systematic

bias, i.e., the situational effect.

A second consequence of the true-score decomposition is that the true variance

σ2(τit) of the test scores Yit is a quantitative mix of variances and covariances, as detailed

below:

σ2(τit) = β2

i · σ2(g) + σ2(ai) + σ2(sit)

+ 2 · {βi · [σ(g, ai) + σ(g, sit)]

+ σ(ai, sit)},

(3)
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where σ(·, ·) denotes covariance. Note that we do not introduce the assumption that the

true-score components are uncorrelated. As the situational component may change across

sessions, even if the error variance does not change across sessions, the reliability of the

test scores is not supposed to be invariant because the reliable variance is not supposed to

be invariant across sessions.

A third consequence of the true-score decomposition is that we obtain a clear

definition of gain scores: The test-retest true-score difference δi ≡ τi2 − τi1 measures only

the temporal variation of situational effects:

δi = si2 − si1. (4)

Consequently, the mean retest improvement is the mean change of situational effects

measured at both times of measurement (for a proof, see Appendix A):

µ(Yi2) − µ(Yi1) = µ(si2 − si1) (5)

From the substantive point of view, a mean retest improvement means that the

situational effects on Session 2 improved upon test performance measured at Session 1. We

defined the sit component as a between-subjects variable. If test-retest effects are

associated with little between-subjects variability, the variance of the situational

component will be reduced, which entails that the reliability of the difference Yi2 − Yi1 will

be small. At the limit, no between-subjects variability would mean that the retest effect is

a constant–in which case the reliability of the gain test scores would be undefined (Raykov,

2001).

Operational hypothesis

Now we consider a battery of m tests. For technical reasons detailed in the Method

section, we assume that the test-specificity of the situational effects, i.e., the fact that the

situational effects measured by two tests do not correlate perfectly, can be neglected in the
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statistical modeling. It is likely that such assumption would not hold in settings where

each test was taken in very different situations. This assumption can be formulated as the

linear relationship:

sjt = νj + λj · s1t, (6)

where j ∈ {2, . . . , m}. The coefficients νj and λj serve to model scaling differences due to

the ways test j and test 1 capture situational effects.3 It is noteworthy that the sit of the

m tests are linearly linked, but as they are allowed to vary across situations (by definition)

they cannot be interpreted as part of g.

Coming back to the assumption that the construct relevant components of the true

score are temporally stable it follows that true changes δ1, δ2, ..., δm are proportional (see

Appendix A for a proof):

δj = λj · δ1 (7)

Such a simple linear structure of true change has testable implications on the

moment structure of the data. If a non-null retest improvement is observed, say

µ(Y12) − µ(Y11) 6= 0, the coefficient λj is determined by the means of the test variables Y1t

and Yjt (see Appendix A for detailed demonstration):

λj =
µ(Yj2) − µ(Yj1)

µ(Y12) − µ(Y11)
. (8)

Therefore the experimental assumption of common situational effects on a set of

cognitive ability tests enables the testing of the assumption of temporally stable ability

components by fixing the loadings of a latent change factor in a longitudinal structural

equation model, as detailed below.
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Method

Rationale

As a complement to the classical approach, which assumes that gain scores reflect

changes of test-specific abilities, we hypothesized that gain scores can be attributed to

situational factors. In other words, there would be a construct-irrelevant component,

common to all test scores in the same session, varying from one session to the other, and

responsible for score increases. Contrary to g, which is assumed to be temporally constant,

the common component would vary from one session to the other and would be responsible

for score increases in a test-retest design. Two forms of this hypothesis can be developed,

depending on whether construct-relevant components are assumed temporally stable or

not. In the strong version, situational effects would be sufficient to explain all of the gain

scores. A weaker version would explain retest effects through a combination of situational

effects and some other factors (i.e., test-specific abilities). The present paper focuses on

the strong version only.

If the strong version holds, provided that the situational effects measured by

different tests can be approximated as perfectly correlated, the score increases on a battery

of tests can be modeled through a unique latent factor, representing the latent change

between both situations. Thus a way to test the strong version is to test the plausibility of

a unifactorial latent change model. Figure 1 depicts the latent decomposition

corresponding to the strong version. Figure 1 is only given for pedagogical purposes to

illustrate the general hypothesis. Such a path diagram does not allow statistical testing

because the corresponding model would be unidentified.

The assumptions of common situational effects along with temporally stable effects

of the g and ai components on scores from a battery of cognitive ability tests can be tested

in the context of a high-stake selection setting, namely, admission into French Aircraft
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Pilot Training (on average each year only 8% of the applicants are selected). As all tests in

a single session are administered during a short period (one day), and as retest cannot

occur before in under a year, each testing session can be defined as a situational unit.

Participants

The sample comprised 752 applicants to the École Nationale de l’Aviation Civile

(French Air Transport Pilot Training) who took the battery of ability tests twice. Test

administrations were one year apart for 90% of the sample. The sample was composed of

89% men, 97% aged between 19 and 23, and 97% coming from preparatory years. 95% of

the participants had no aeronautic experience (ab initio), and 5% were experienced pilots.

Materials

This study focused on the three paper-and-pencil tests taken by all applicants

between 1998 and 2005. Applicants were exposed to the exact same tests across both

testing sessions. Tests are described below using Carroll’s terminology.

1. Visual Perception test (V). This test is composed of three time-limited sub-tests

(180 s, 300 s, 210 s) measuring the following abilities: (a) perceptual speed (an identical

pictures test of 25 items), (b) spatial relations (a picture rotation test of 20 items), and (c)

visualization (a block counting test of 15 items). Total scores varied from 0 to 85 (number

of correct answers).

2. Mechanical movement test (M). This test presents 36 situations to evaluate, from

a mechanical point of view, with a choice of 4 possible answers for each situation. Test is

time limited (25 min) and scores range from 0 to 42 (number of correct answers). As

Carroll (1993) mentioned, this kind of test is loaded as well on Mechanical Knowledge and

Visualization factors (p. 324).

3. Attentional ability test (A). In this test applicants have to detect three target

signs among eight in a page containing 1560 signs. Time is limited (10 min) and scores
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range from −60 to 60 (number of correct answers minus number of omissions divided by

10). This test evaluates selective attention and concentration during a monotonous task

(the “ability to attend” in Carroll’s terminology). However, it also includes a perceptual

speed component because it also measures the speed of locating given symbols in an

extended visual field.

Analyzes

As a whole, the model depicted in Figure 1 is not testable due to the high number of

parameters to be estimated. Therefore we will test an identified model that is implied by

the hypotheses. To test the hypothesis of temporal stability of the g and ai components

jointly with common situational, transient effects, we specified a latent change structural

equation model where true change was accounted for by a single change factor with fixed

loadings. The change factor represents situational test-retest effects. The model is depicted

in Figure 2, lower panel. To make the model algebraically identified, the loading λV was

fixed at unity. The mean structure was completely specified by (i) fixing the means of the

latent variables, as the values of parameters µ(τV1), µ(τM1), µ(τA1), and µ(δV) are those of

estimates m(YV1), m(YM1), m(YA1), and m(YV2) − m(YV1), respectively, where m(·)

denotes the sample mean, and (ii) by fixing the loadings on the change factor as detailed in

Equation 8.4 The manifest variables had null intercepts. As the model has 11 degrees of

freedom, we obtained sufficient statistical power to test “close fit” (i.e., null RMSEA = 0.05

and population RMSEA = 0.08), as π = .81 with N = 752 and α = .05 (MacCallum,

Browne, & Sugawara, 1996). As with the multitrait model, the latent change model does

not constrain the error variances to be equal over time, and assumes uncorrelated errors.

A more restricted latent change model was specified, within which the error

variances were constrained to be equal over time, yielding 14 degrees of freedom.

Comparing the fits of both models allows testing for temporal invariance of the error
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variances. The models were tested with the Mplus software (Muthén & Muthén, 2004), by

using the robust maximum likelihood estimator (see Appendices B, C and D for the Mplus

syntaxes of the three models).

Results

Mean Retest Improvements

The observed moment structure of the final sample of data (see below) is displayed

in Table 1. The data exhibited large mean effect sizes, d̂V = 0.85, d̂M = 0.64 and d̂A = 1.02

for the visual, mechanical and attentional tests, respectively. The effect sizes reported here

are calculated with the d formula (Cohen, 1988).

Neglecting the Regression-to-the-Mean Effect

Because of the unperfect reliability of the tests, the mean gain score is

overestimated, due to the regression-to-the-mean effect (Nesselroade, Stigler, & Baltes,

1980). Thus, the practical issue is to evaluate whether this effect may be neglected by a

SEM account of the gain scores. According to Bobko (2001)’s computation formula of the

expected gain score due to the regression-to-the-mean effect, gains of .04, .02, and .10

standard deviation are expected for tests V, M, and A, respectively. These values are

rather small compared to the observed effect sizes in Table 1. Thus regression-to-the-mean

alone cannot account for the data, and we will neglect it in further analyses.

Common Situational Effects

The latent change model with 11 degrees of freedom, i.e., without the constraint of

constant error variance across time, fitted the data very closely,

χ2(N = 752, df = 11) = 7.00, p = .80, RMSEA = 0.000. The more restricted model, i.e.,

with the constraint of constant error variance across time, exhibited a worse fit,

χ2(N = 752, df = 14) = 33.06, p = .003, RMSEA = 0.043, χ2

diff
(N = 752, df = 3) = 13.17,
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p = .004. The modification indices suggested that scores at test P could exhibit unstable

error variances across sessions.

Therefore, to improve linearity, we replaced the variables YA1 and YA2 with a

log-transformation (the best transformation to improve normality indices) after having

removed 16 cases with extreme low scores (N = 736). The model with 11 degrees of

freedom fitted the data very closely, χ2(N = 736, df = 11) = 7.20, p = .78,

RMSEA = 0.000. The fit of the restricted model was not significantly decreased,

χ2(N = 736, df = 14) = 14.54, p = .41, RMSEA = 0.007, χ2

diff
(N = 736, df = 3) = 6.73,

p = .08, and the more parsimonious model was retained. Thus, assuming that the

log-transformation of the scores from the test P is suitable, invariance of error variances

was retained. The input covariance matrix, after log-transformation of test P scores, is

given in Table 1.

In short, the goodness-of-fit summaries support the conjoint hypotheses of common

situational effects as stated in Equation 6 and temporally stable ability components as

stated in Equation 2.

Further Analyzes

Estimates of latent variances, covariances, and correlations are given in Table 2.

Results show correlations less than .50 between the true-score variables. The estimated

variance of the change factor δV was very small with respect to the variance of τV1,

5.52/61.54 ≃ 0.09. Similarly, the estimated variance of the latent gain scores at test M was

very small with respect to the variance of τM1, 5.52 × 0.3032/10.75 ≃ 0.05. Test A seemed

more sensitive to gain scores, 5.52 × 0.0342/0.03 ≃ 0.21.

The estimated residual variances of the manifest variables YVt, YMt, and YAt,

t = 1, 2, were 26.75 (SE = 1.84), 4.390 (SE = 0.34), and 0.02 (SE = 0.00), respectively.

Table 3 displays the reliability estimates of the variables Yit, and the reliability estimates
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of the gain-score variables Yi2 − Yi1. As expected, reliability estimates were not

time-invariant although they ranged in the usual levels. Unsurprisingly, the gain-score

reliability values were very small.

Discussion

In this paper, we investigated whether the error-free component of gain scores could

be accounted for by temporal variations in situational effects, that is, reliable although

construct-irrelevant effects. Situational effects refer to the person’s state in a given testing

session. Thus, change in situational effects could increase the observed scores significantly.

We showed that such a view is testable as far as situational effects can be thought of as

common to a battery of cognitive ability tests. Specifically, the gain scores can be

formulated as the transient effects of a one latent change variable, in a highly constrained

structural equation model. Using data from the operational selection setting for admission

into the French Aircraft Pilot Training, we provided evidence for the plausibility of such a

view.

Interpreting the Plausibility of Perfectly Correlated Situational Effects

As a rule, situational effects are defined at the level of a test. Thus, different tests

measure different situational effects. However, in the present paper, we were successful in

assuming perfectly correlated situational effects at both times. There are two possible

interpretations of this result:

1. Situational effects were perfectly correlated.

2. Situational effects–defined as situational transient variations–were not perfectly

correlated and the sizes of the involved variances, that is σ2(sit) and σ2(δi), were small

enough–with respect to the sizes of σ2(g) and σ2(ai)–to make that mispecification

undetectable by the likelihood ratio test.
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From a substantive point of view, in settings such as one-day-session testing, it is

likely that situational effects were not very test-specific because the testing situation acts

as a situational unit. At Session 1, test anxiety, other emotional factors and the way each

applicant interacts with each test would work as a halo effect. At Session 2, such a halo

could be enriched by a global effect of practice. For example, it is known that for entry to

the French Air Transport Pilot Training, applicants are highly motivated, and organized

with Internet forums where they exchange training programs and information about the

tests. As a consequence, they are globally well-trained on all tests. Thus, it is likely that

practice acts as a homogeneous situational factor.

The Situational Effect and the g-Loading Effect

In this paper, we tested the strong version of the situational effects hypothesis, that

is, situational effects can explain all gain scores. Previous research (e.g., te Nijenhuis et al.,

2007 for a meta-analysis) has shown that the less a test is g-loaded, the greater the score

increase is after cognitive intervention. However, our approach to gain scores is not

opposed to the g-loading effect which could be used to explain size effect differences for

different cognitive ability tests. Our purpose was to propose a modeling that accounts for

individual effects on different tests, while assuming stability of g. In other words, we

investigated another interpretation of the gain scores on cognitive ability tests compatible

with no change on g.

In our empirical study, the strongest retest effect was observed for test A, which is

probably less g-loaded than test V for example, in accordance with the g-loading effect

(estimated g-loadings of each test of this study were not available). Nevertheless, the

difference of size effects for the different tests is included in the λi parameters of our

model. Indeed this parameter corresponds to the size effect of one test compared to the

size effect for the reference test (test V in our study). Thus the g-loading effect is included
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in the modeling.

However, it remains an open question how to statistically disentangle the variance

due to g and the variance due to common situational effects, as both sources of variance

are defined as common variance. From this perspective, it can be suggested that common

factors used in previous research that do not account for situational effects do not represent

g with perfect validity, especially when participants are likely to have trained themselves.

Implications on Predictive Validity

Our true-score decomposition highlights in what sense test scores can exhibit

different predictive validity for a criterion. The covariance between the situational

component and the criterion is not supposed to be invariant across testing sessions, as the

situational effects are transient effects. As the predictive validity of the true-score variable

is a function of its covariance with the criterion, and because the covariance between the

situational component and the criterion enters the covariance between the true-score

variable and the criterion, the latter is not supposed to be invariant across testing sessions

as well. Because test scores measure situational effects, their construct and predictive

validity may change across testing sessions while their validity with respect to the target

ability components remains unchanged.

Implication on the Measurement Invariance Question

As noted in the Introduction, Reeve and Lam (2005) and Lievens et al. (2007)

investigated measurement invariance of cognitive ability test batteries and found evidence

supporting both measurement invariance (Reeve & Lam, 2005) and non-invariance

(Lievens et al., 2007), demonstrating the complexity of retest effects. Our findings are

clearly in favor of metric non-invariance, as the true-score composition is supposed to

change from one session to another.
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Interpreting Reported Decrease of g-Loadings after Practice

Practice could be associated with a reduction of g-loadedness (te Nijenhuis, Voskuijl,

& Schijve, 2001), although the authors warned against too strong conclusions in the

presence of small effect sizes. In usual factor analytic models, the g-loadings are loadings

of a common factor. Recognizing that this common factor may capture a combination of g

and common situational effects, our framework could explain that the loadings on this

factor decrease at the retest, provided that the variance of the situational effects at the

retest decrease, as shown in Appendix E. In such a case, assuming scalar invariance and

temporal invariance of the error variances, (i) the variance of the observed score decreases

at Session 2 and (ii) the g-validity of test scores would increase after practice. Further

research would be needed to properly test the null hypothesis of invariance of the

g-loadings in longitudinal test-retest models.

Limits

In the present study we were led to assume that the retest effects were due to

training between both sessions. But there was no available information concerning the

type and number of training hours for each applicant. Compared to the meta-analytic

mean effect size observed in practice effects studies (+0.26 SD, Hausknecht et al., 2007),

our empirical results suggest many training hours. Moreover, our finding of small variance

of the change factor suggests a homogeneous training across individuals but it would have

been interesting to have empirical data on it.

For the purpose of the paper it was sufficient to test the situational effect hypothesis

on three tests. However it would have been even more convincing with a large battery of

tests covering a variety of cognitive abilities. To assess the degree of generalization of our

findings, one could test our hypothesis with a greater number of tests, including more

highly g-loaded tests like Raven’s matrices and tests measuring very disparate abilities
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(e.g., verbal ability tests, quantitative ability tests, psychomotor tests, etc.).

In our study, we argue in favor of construct-irrelevant changes after practice because

these changes can be modeled by a single factor, common to a battery of tests. The idea is

that if the factor is common to different tests and if it changes from one session to another,

then it is not likely to represent construct relevant change on each test. Nevertheless, an

alternative would be homogeneous construct-relevant changes. Coming back to the

“shadow-illustration”, such a situational effect could not be disentangled with a

homogeneous and real growth of the person between two measurements. From this point of

view, the only way to investigate this question is to assess far transfer or broad

generalizability (Jensen, 1998, p. 333).

Conclusion

In short, we proposed a new interpretation of gain scores observed between two

administrations of cognitive ability tests, especially in a selection setting where applicants

are likely to train themselves. Our empirical results are compatible with a situational

effect hypothesis which assumes the stability of the construct-relevant component of the

score. Thus our results are compatible with a non-g increase of scores. One practical

implication is that first-time takers’ and retakers’ scores should not be treated identically.

Indeed, all scores embed a construct-irrelevant component, but that component looms

larger in retakers’ scores than in first takers’.
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Appendix A

Proofs for Equations 5, 7, and 8

Equation (5) :

µ(Yi2) − µ(Yi1) = µ(τi2) − µ(τi1)

= µ(τi2 − τi1)

= µ(si2 − si1).

Equation (7) :

δj = sj2 − sj1

= νj + λj · s12 − (νj + λj · s11)

= λj · (s12 − s11)

= λj · δ1.

Equation (8) :

µ(Yj2) − µ(Yj1) = µ(δj)

= λj · µ(δ1)

= λj · [µ(Y12) − µ(Y11)],

⇐⇒ λj =
µ(Yj2) − µ(Yj1)

µ(Y12) − µ(Y11)
.



Situational Effects in Ability Testing 25

Appendix B

Mplus syntax of the multitrait model

VARIABLE: NAMES ARE V1-V6;

!V for observed variables,

!V1=test V at Session~1, V2=test V at Session~2,

!V3=test M at Session~1, V4=test M at Session~2,

!V5=test A at Session~1, V6=test A at Session~2.

USEOBS ARE V5>=100 AND V6>=100;

USEVARIABLES V1-V4 V7 V8;

DEFINE: V7 = LOG(V5); V8 = LOG(V6);

ANALYSIS: TYPE= MEAN;

ESTIMATOR = MLR;

MODEL:

!T for true scores

TV BY V1 V2@1;

TM BY V3 V4@1;

TA BY V7 V8@1;

[TV TM TA];

[V1@0];

[V3@0];
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[V7@0];

[V2 V4 V8];

OUTPUT: STANDARDIZED;RESIDUAL;TECH4;SAMPSTAT;MODINDICES;
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Appendix C

Mplus syntax of the latent change model with fixed loadings

VARIABLE: NAMES ARE V1-V6;

!V for observed variables,

!V1=test V at Session~1, V2=test V at Session~2,

!V3=test M at Session~1, V4=test M at Session~2,

!V5=test A at Session~1, V6=test A at Session~2.

USEOBS ARE V5>=100 AND V6>=100;

USEVARIABLES V1-V4 V7 V8;

DEFINE: V7 = LOG(V5/10); V8 = LOG(V6/10);

ANALYSIS: TYPE= MEAN;

ESTIMATOR = MLR;

MODEL:

!T for true scores for tests V, M, and A, at Session~1

!DELTA for true change on test V.

TV1 BY V1 V2@1;

TM1 BY V3 V4@1;

TA1 BY V7 V8@1;

DELTA BY V2

V4@.303
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V8@.034;

[TV1@49.751];

[TM1@25.947];

[TA1@3.216];

[V1-V8@0];

[DELTA@6.442];

OUTPUT: STANDARDIZED;RESIDUAL;TECH4;SAMPSTAT;MODINDICES;
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Appendix D

Mplus syntax of the restricted latent change model with fixed

loadings

VARIABLE: NAMES ARE V1-V6;

!V for observed variables,

!V1=test V at Session~1, V2=test V at Session~2,

!V3=test M at Session~1, V4=test M at Session~2,

!V5=test A at Session~1, V6=test A at Session~2.

USEOBS ARE V5>=100 AND V6>=100;

USEVARIABLES V1-V4 V7 V8;

DEFINE: V7 = LOG(V5/10); V8 = LOG(V6/10);

ANALYSIS: TYPE= MEAN;

ESTIMATOR = MLR;

MODEL:

!T for true scores for tests V, M, and A, at Session~1

!DELTA for true change on test V.

TS1 BY V1 V2@1;

TM1 BY V3 V4@1;

TP1 BY V7 V8@1;

DELTA BY V2

V4@.303
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V8@.034;

!constraint on equality of variances

V1 V2 (a);

V3 V4 (b);

V7 V8 (c);

[TV1@49.751];

[TM1@25.947];

[TA1@3.216];

[V1-V8@0];

[DELTA@6.442];

OUTPUT: STANDARDIZED;RESIDUAL;TECH4;SAMPSTAT;MODINDICES;
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Appendix E

Revisiting the g-Loadings Decrease History

Let the scores Yit at test i from a battery of tests taken at time t be a linear function

of a centered common factor ft and a residual variable kit:

Yit = bi · ft + kit,

where bi is a scaling constant which is measurement invariant across time for

meaningfulness in the longitudinal perspective. The so-called g-loading βit in a usual

factor analytic model expresses as

βit = bi · σ(ft),

where σ(ft) denotes the standard deviation of ft.

Assuming:

1. ft = g + st, where st denotes common situational effects,

2. σ(g, st) = 0 for simplicity,

it follows that

σ2(s2) < σ2(s1) =⇒ σ2(g) + σ2(s2) < σ2(g) + σ2(s1)

=⇒ σ2(g + s2) < σ2(g + s1)

=⇒ σ2(f2) < σ2(f1)

=⇒ b2

i · σ
2(f2) < b2

i · σ
2(f1)

=⇒ β2

i2 < β2

i1

=⇒ βi2 < βi1.

Assuming that

σ2(ki1) = σ2(ki2),

it follows that

σ2(Yi1) > σ2(Yi2).
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Thus, defining the g-validity of the test-score variable Yit as

ρg(Yit) =
b2

i · σ
2(g)

σ2(Yit)
,

it follows that

ρg(Yi2) > ρg(Yi1).
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Notes

1In selection settings, regression to the mean can occur due the sampling bias at

Session 1, and the issue arises whether this effect is negligible or not, as will be discussed

in our empirical study.

2Change associated with a given test is not supposed to be exactly equal to change

associated with another test, but linearly related, as detailed in the Operational

Hypothesis section.

3We assume that scaling differences of situational effects between measurement tools

depend only on the interaction between the measurement tools and the population of

testees, whatever the time they are used; thus, νj and λj are specified as scaling factors

without reference to the number of the testing session.

4 λM = (27.899 − 25.947)/(56.193 − 49.751) = 0.303 and

λA = (3.433 − 3.216)/(56.193 − 49.751) = 0.034.
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Table 1

Input Variances (Diagonal), Covariances (Below Diagonal), Correlations (Above Diagonal

and in Italics), Means of the Observed Variables

YV1 YV2 YM1 YM2 YA1 YA2

YV1 83.21 .66 .31 .26 .34 .19

YV2 55.31 85.10 .25 .21 .31 .26

YM1 11.25 9.23 15.51 .67 .10 −.08

YM2 8.55 6.80 9.46 12.71 .06 −.07

YA1 0.68 0.62 0.09 0.04 0.05 .55

YA2 0.39 0.55 −0.09 −0.06 0.03 0.05

Means 49.75 56.19 25.95 27.90 3.22 3.43
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Table 2

Estimates of the Latent Variances, Covariances (Below Diagonal), and Correlations (Above

Diagonal and in Italics)

τV1 τM1 τA1 δV

τV1 61.54 (4.34) .45 .48 −.36

τM1 11.66 (1.32) 10.75 (0.70) .11 −.55

τA1 0.64 (0.08) 0.06 (0.03) 0.03 (0.00) −.07

δV −6.57 (1.93) −4.26 (0.71) −0.03 (0.04) 5.52 (1.54)

Note. Robust standard errors in parentheses. The loading

values can be computed using Equation (5).
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Table 3

Reliability Estimates of the Test, Retest and Gain Score Variables

Test Retest Gain

V .70 .67 .09

M .71 .66 .05

A .61 .64 .14
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Figure Captions

Figure 1. The latent decomposition corresponding to the hypothesis of no temporal

stability of g and test-specific ability components, and common, test-unspecific, transient

situational effects. Y and τ represent observed and true-score variables, respectively,

associated with tests V, M, and A used at times 1 and 2. ai represents ability specific to

test i, g the general factor, st the situational effects at time t and δs represents the

difference s2 − s1. The latent covariance structure cannot be identified because there are

21 manifest variances and covariances against 31 parameters to be estimated–the 4

estimated loadings and 12 estimated variances are noted with a star (*); the 15 estimated

covariances are not represented due to a question of readability.

Figure 2. Path diagram of the latent change SEM. Y and τ represent observed and

true-score variables, respectively, associated with tests V, M, and A used at times 1 and 2.

δV represents the difference τV2 − τV1. Parameters λM and λA are fixed–see Equation 8.
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