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SUMMARY

This paper describes a method for threshold’s reductio
taking into account features both concerning GPS receiv
modification and  gain on the performances improvemen
This method involves two steps. The goal is to use th
strong channels of the GPS receiver which are actua
tracking satellites for velocity aiding the other channe
trying to acquire or track satellites presenting a low signa
over noise ratio due to lower elevation or masking
conditions. Second, according to the theory and th
characteristics of the digital internal loops of the GPS
receiver, the predetection bandwidth is reduced to th
lowest value permitted by the velocity aiding accuracy
This technique allows to improve the GPS accuracy an
robustness.  The paper proposes and identifies t
automatic model of a velocity aided loop.  Furthermore
to allow the validation of the described threshold
reduction method, the technique is proposed to be insert
and validated into a software simulator of a GPS receiv
model.  The on-going work is intended to be applied fo
space and aeronautical applications.

1.  INTRODUCTION

The spaceborne GPS receivers are classically used in l
earth orbit, with good GPS visibility conditions.  However,
some space missions require a GPS receiver operating w
poor link budget.  Such missions are for instance reent
capsule or shuttle (after radio black-out), high altitud
spacecraft, GPS attitude determination, degraded pointi
modes, radio-occultations and interference environme
scenario.  These applications need quick reacquisition 
the GPS satellites, GPS receivers build-in robustne
technology and better GPS visibility conditions than norma
GPS navigation.

The aeronautical navigation GPS receivers need al
acquisition and tracking threshold’s reduction, for the
following reasons :

9 improvement of resistance to jammers, navigatio
availability and satellite’s visibility.
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9 augmentation of accessible pseudorang
measurements (improvement of RAIM).

9 augmentation of accessible carrier phas
measurements (improvement of phase trackin
navigation).

The integrity is one of the major requirement fo
aeronautical mission.  The objective is to maximise th
number of tracked SV (Satellite Vehicle), even in th
presence of interference.  For a space mission where 
C/No may be low, we are more concerned with th
number of satellites that could be tracked.  But, in orb
the dynamic (acceleration) is always very small (for fre
orbital trajectories) and predictable.  In these 2 domai
of application, it is possible to reduce the threshold o
GPS signal acquisition and tracking.

Also, in many situations, the acquisition process may 
too long and/or the tracking loops of a GPS receiver m
loose the lock of the signal during special conditions su
as low satellite elevation angle or high dynam
manoeuvring.  To improve the GPS acquisition time a
the tracking performance an investigation is conducted
the use of additional internal GPS velocity aidin
information.

The acquisition and tracking threshold reduction techniq
presented consists in supplying a pseudovelocity aiding
the carrier and/or the code loop, this pseudovelocity aid
is provided by the navigation filter itself (aeronautical PV
filter, or orbital Kalman filter, such as DIOGENE
developed by CNES, where DIOGENE is « Determinati
Immédiate d’Orbite par GPS et Navigateur Embarqué
Immediate Orbit Determination with GPS and OnBoa
Navigator).  The technique enables to reduce the Co

thresholds below 20 dBHz, without any external aidin
other than a tight coupling between the on board naviga
and the signal processing loops inside the GPS receiver

OBJECTIVES AND METHODOLOGY

Many experiments are presently being carried out on 
future DGPS-based approach and landing systems
improve the quality of aircraft navigation.  The use of C/A
code receivers for aeronautical and spacebo
applications requires high reliability and integrity.  Low
visibility and satellite elevation angle during phases 
flight can present problems for GPS reception of t
channels presenting low C/No.  The study of satellite
missions and aeronautical environment show that G
receiver must be provided with a strategy to reduce 
acquisition and tracking thresholds to improve th
navigation integrity, availability and performances
required for these missions.
6Presented at ION GPS-98, Nashville 
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This paper intends to present a status  of the models stud
to evaluate the Autonomous Velocity Aiding Performances 

The threshold reduction performance is evaluated versus 
signal processing parameters of the receiver and t
pseudovelocity aiding characteristics.  Different models o
this pseudovelocity aiding are presented, for the aeronauti
and spaceborne applications.  The main characteristics a
theoretical performances of the aided processing loops a
derived from these models.

1.1  External Velocity Aiding using INS

It is possible to reduce the threshold of the loop b
reducing the predetection bandwidth [4].  This is possib
if an external velocity aiding is provided (Figure 1-1).
Such a process is detailed in many papers.

L o o p
Fi l ter

Arc tan (Q/ I )

Car r ie r
N C O

Veloc i ty
A id ing

~
( )D t ~

( )V t ∆ ~
( )V t

V tAiding( )

D t( )

+

Figure 1-1: Loop with External Velocity Aiding.

This mode of operation is frequently used in military
operation using integrated INS.

2. ANALYSIS OF LOOP PERFORMANCES

2.1  Noise Measurement

For the code loop with a programmable chip spacing, th
standard deviation of the pseudorange noise measureme
standard deviation (1σ) is approximated by :

σ PR
c

nm s

o

FI

o

m
c
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C

N

B

C

N

( ) =
⋅









⋅ +




























2

1
2

(2-1)

c = 3x108 m/s ; speed of light,
Rc = 1.023Mchip/sec ; C/A code speed,
Cs = 1 chip ; chip spacing (1/2, 1/4, 1/8, etc),
Bnm = 1 Hz ; code loop bandwidth,
BFI = 50 Hz ; data predetection filter bandwidth,
C/No : signal to noise spectral density power ratio.
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Numerical Application:

BFI = 50Hz, Bnm = 1Hz et C/No = 40dBHz
we obtain, σPD = 2meters.

The standard deviation of the pseudovelocity erro
measured on the carrier is given by :

σ
πPV

t D
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o

FI

o

m s
c

f T

B

C

N

B

C

N
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(2-2)

ft : transmitted frequency (FL1, FL2 or others),
TD = 1 sec ; Doppler integration time,
Bnp = 5 Hz ; carrier loop filter bandwidth,

Numerical Application:

BFI = 50Hz, Bnp = 10Hz, C/No = 40dBHz et TD =
0.6s, we obtain σPV = 0.35cm/s.

One other possibility to measure the standar
deviation of the code pseudospeed error is give
by :

σ
σ σ σ

PV

PR PR

k k

PR

code

k k

t t t
=

+

−
=

⋅+

+

2 2

1

1 2

∆
(2-3)

with σ σ σPR PR PRk k
= =

+1
,  t t tk k+ − =1 ∆

and ti = date of pseudorange measurement, wit

instantaneous standard deviation σPRi
.

Numerical Application: σ PVcode m s=
⋅

≅
2 2

0 6
4

.
/

2.2  Code Loop Threshold on Tracking

The code loop condition to stay in lock is given by
[4] :

a mPR⋅ ≤σ
∆
2

( ) (2-4)

From equation (2-1), we obtain the following
condition, with Cs = 1 :

C

N
a B

B

a Bo
nm

FI

nm

≥ ⋅ + +
⋅









2

21 1
4

(2-5)
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For BFI = 50Hz, Bnm = 1Hz and a = 3, we have :

C

N
dBHz

o Boucle









 ≥ 17 (2-6)

For BFI = 250Hz instead of 50Hz, we have :

C

N
dBHz

o Boucle









 ≥ 20 (2-7)

These values may be adjusted in function of th
velocity aiding.  Figure 2-1 shows the tracking
threshold versus BFI in function of Bnm.

100 200

10

20

C
/N

o [
dB

]

:  Bn m = 2
:  Bn m = 1
:  Bn m = 0.5
:  Bn m = 0.1

a  =  3

B FI  :  Predetect ion Bandwidth [Hz]

Figure 2-1: C/No versus BFI  (Variation of B nm).

100 200
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20

B FI  :  Predetect ion Bandwidth [Hz]

C
/N

o [
dB

]

:  a = 4
: a = 3
: a = 2
: a = 1

  Bn m = 1

Figure 2-2: C/No versus BFI  (Variation of a).

3.  M ODEL OF AN AUTONOMOUS AIDED L OOP

A model of a tracking DLL aided by a velocity
predection coming from a local navigator is propose
hereafter:
21
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Figure 3-1: Modelling of the Loop with velocity
 aiding providing from GPS navigator

( Autonomous Code ONLY).

3.1  Definitions, and Elaboration of a Model

A simplified model, using direct modelisation of th
velocity aiding errors, is described hereafter.

The expression of the pseudorange measurement (P
generally written as :

PR R c Ti
Useful

r ii
= + ⋅ ∆ (3-1)

where c is the speed of light, R the radial distance betw
the GPS satellite and the mobile and ∆T  the time
difference between the receiver and satellite clock.

After derivation, we obtain the expression of the real us
pseudovelocity (i.e. without error) :

PV
dPR

dt

dR

dt
c

d T

dt
V c

d T

dti
Useful i

Useful
r i

r
ii

i
= = + ⋅ = + ⋅

∆ ∆ (3-2)

where Vr is the radial speed of the receiver versus 
transmitter,

and c d
T

dt
i⋅







∆  is the pseudovelocity due to the driftin

shift of the clock between the receiver and the satellit

noted also PVi
Clock .

V
α

V r

G P S
Satel l i te

         Figure 3-1: Mobile Radial Speed vs GPS Satellite.
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Useful

r i
Clock
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= + (3-3)

The orbital navigator supplies an estimation PVi

~
 of the

pseudovelocity corresponding to the aiding velocity
noted :

PV PV V c d
T

dti
Navigator

i
Useful

r
i

i
= = + ⋅







~ ~

~∆
(3-4)

where c d
T

dt
i⋅









∆ ~
 is the estimated clock pseudovelocity of

satellite i noted also PVi
Clock~

.

Moreover, we introduce the raw measurement from the

GPS receiver with the notation PVi
Observable

corresponding to the pseudovelocity which can effectively
be observed by the loops of the receiver, perturbed by the
global error sources represented by the notation

∆PVi
Observable.

PV V PV PVi
Observable

r i
Clock

i
Observable

i
= + + ∆ (3-5)

where V PV PVr i
Clock

i
Useful

i
+ =  is the real useful

pseudovelocity, from the navigator estimation.

The term ∆PVi
Observable represent notably the

perturbations due to SA (Selective Availability), to
ionosphere, to multipaths and to jammers.

R F L o op Navigator

PVi
Observed PVi

Mesured

PVi
Navigator

P V T
Veloci ty
Aid in g

Figure 3-2: Relation between the PseudoVelocity Notations.

Reminding that the PVi
Observable is a characteristic of the

received signal, it consists of physical pseudovelocity

while PVi
Mesured contains the steady state error of the

loop such as the potential error reductions due to
multipath coming from the loop and the thermal noise of
the loop. N.B. The measurement PVi

Mesured is of course

available only when the loop is in tracking mode.

We have :

PV V PV PVi
Navigator

r i
Clock

i
Navigator

i
= + +~ ~ ∆ (3-6)
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where ∆PVi
Navigator  is the estimation error of the

useful pseudospeed.  The error on the aiding veloc
supplied by the navigator and seen by the loops of 

GPS receiver is notified by ∆PVi
Loop .  We obtain :

∆PV PV PVi
Loop

i
Observable

i
Navigator= − (3-7)

after some developments, we obtain :

∆ ∆

∆

PV V PV PV

V PV PV

i
Loop

r i
Clock

i
Observable

r i
Clock

i
Navigator

i

i

= + +

− + +            ( )
(3-8)

after simplification :

∆ ∆ ∆PV PV PVi
Loop

i
Observable

i
Navigator= − (3-9)

The ∆PVi
Observable represents the physical perturbatio

of the GPS signal notably due to the SA.

Examples of ∆PVi
Navigator  are presented bellow. It is

known that the performance of orbit calculation of th
Orbital Navigator such as DIOGENE are dependent on
the type of orbit.  Generally, we consider three types
orbit which are:

- Low Earth Orbit (LEO considered here at an altitud
of 1000Km),

- Geostationary Orbit (GEO),
- Geostationary Transfer Orbit, after injection (GTO).

The performance of orbit calculation is estimate
hereafter :

Type of
Orbit Clock Class Precision

LEO
Short Term :
∆F/F=10-7

Position 100m (3σ),
speed 0.1m/s (1σ).

GEO ∆F/F=10-9,
Position 250m (3σ),
speed 0.015m/s (1σ).

GTO ∆F/F=10-9,
Position 500m (3σ),
speed 0.08m/s (1σ).

Table 3-1 : Performance of Navigator vs Type of Orbit.
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3.2   Analyse of the Loop Model

F(s)
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+
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1
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s
PVi
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Figure 3-2: Mathematical Model of Autonomous
Velocity Aiding Loop. We are searching to develop the
following expression:

H s
PR s

PR s
s

i
Useful1( )

( )

( )
= (3-10)

(3-11)

[ ]
PR s

PR s PR s F s

s

PV s

ss
e s i

Nav

( )
( ) ( ) ( ) ( )

=
− ⋅

−

(3-12)

PR s
PR s F s

s

F s PR s

s

PV s

ss
e s i

Nav

( )
( ) ( ) ( ) ( ) ( )

=
⋅

−
⋅

−

(3-13)

1+





⋅ = ⋅ −
F s

s
PR s PR s

F s

s

PV s

ss e
i
Nav( )

( ) ( )
( ) ( )

We have also:

[ ]
PR s

s PR s PV s

se

i
Useful

i
Obs

( )
( ) ( )

=
⋅ + ∆ (3-14)

and:

PV s s PR s PV si
Nav

i
Useful

i
Nav( ) ( ) ( )= ⋅ + ∆ (3-15)

After some development, using (3-14) and (3-15), we
obtain :

1

1

+ +





⋅ =

−





⋅ +
⋅

F s

s

G s

s
PR s

F s

s
PR s

F s PR s

s

s

i
Useful i

Obs

( ) ( )
( )

( )
( )

( ) ( )∆
(3-16)

Where

G s
PV s

PR s
i
Navigator

s

( )
( )

( )
=

∆ (3-17)

is the transfer function of the Navigator for one channel.
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The function can be analysed for several type 
sinusoidal perturbations, noted :

p t b ti i i( ) sin( )= ⋅ ω (3-18)

Assuming the following perturbations :

∆PV s
b

s
P si

Nav( ) ( )=
⋅
+

=1 1
2

1
2 1

ω
ω

(3-19)

This perturbation can represent the theoretical naviga
harmonic error, for instance.

∆PV s
b

s
P si

Obs( ) ( )=
⋅
+

=2 2
2

2
2 2

ω
ω

(3-20)

This perturbation can represent the selecti
availability, for instance.

Using F s
K s a

s
( )

( )
=

⋅ +
, and plugging in (3-16), we

have:

(3-21)
s Ks a

s
PR s PR s

s Ks a

s
P ss i

Useful
2

2

2

2

+ +







 ⋅ = ⋅

− + +







 +( ) ( ) ( )

where

P s
s

K s a

s
P s s P s( )

( )
( ) ( )= ⋅

⋅ +
⋅ − ⋅





1
2 2 1

(3-22)

ie :

P s
s

K s a

s

b

s
s

b

s
( )

( )
= ⋅

⋅ +
⋅

⋅
+







 − ⋅

⋅
+



















1
2

2 2
2

2
2

1 1
2

1
2

ω
ω

ω
ω

(3-23)

Simulation of this model will be perform on a softwa
GPS Receiver Simulator.

4.  CODE ONLY PERFORMANCES IN ACQUISITION

The « Code Only Acquisition » threshold [C/No]co is
approximated using the following formula [4] :

(4-1)

( )C

N

a

f N
B f N a L L

o co cb
FI cb co ss









 >

⋅
⋅ ⋅ + ⋅ ⋅

2

( )
( )

τ
τ

BFI : Pre-Detection Bandwidth,
Bnm : Noise Bandwidth (PR measures),
Lco : Code Only threshold losses due to

pseudovelocity error (Lco>1),
Presented at ION GPS-98, Nashville 
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Lss  : Losses due to the sweeping speed α of the DLL
local code,

Ncb  : Number of channels of the correlator,
F(Ncb) : Function of the number of correlator branch ;

F(Ncb)=Ncb or f(Ncb)= Ncb
.

∆PV  : PseudoVelocity error : ∆PVloop (cf 4-9 ),

with :

L dB

PV f

B c

PV f

B c

co

o

FI

o

FI

( ) * log

sin

=

⋅ ⋅
⋅









⋅ ⋅
⋅





























10

2
π

π

∆

∆
(4-2)

For Lco < 3dB :

[ ]abs PV
B c

f
FI

o

∆ <
⋅ ⋅0 443.

(4-3)

and

Lss = − +1
2 12

2α α
(4-4)

5 1 0

1 5

2 0

∆PV [Hz ]

C
/N

o 
[d

B
] :  a = 2

:  a = 3

τ  =  2 sec

F ( N cb)  = 1

α  =  1  Chip /sec

Figure 4-1: C/No vs Aiding Velocity Error .

5. GENERAL CONCLUSION

One of the main concerns with the use of GPS is th
integrity and availability of the receiver navigation solution
being used.  The paper intends to bring some elemen
concerning a solution to improve the performance of th
receiver for the channels presenting signals with low SNR
The status of a autonomous code only processing modeli
has been presented. Simulation results will be presented
a future paper.
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