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ABSTRACT  

The EGNOS Signal In Space (SIS) performance is 
defined in terms of accuracy, integrity, continuity of 
service and availability. For Civil Aviation, those four 
components of the performance shall fulfill ICAO 
requirements (particularly stringent for the integrity).     

EGNOS is expected to be operational by the first quarter 
of 2004. One of the major issues for Civil aviation in the 
perspective of operating EGNOS, is to prove that the 
system is safe to use. In this context, the demonstration of 
the EGNOS compliance with the integrity requirements is 

of the utmost importance. This raises the following 
question:  

How to assess the integrity performance of the 
EGNOS SIS? 

In the frame of Eurocontrol work supporting the 
operational validation of EGNOS, a number of techniques 
are under investigation to evaluate measurement data and 
provide an assessment of the integrity achieved.  

It is not expected, even using a combination of different 
techniques that compliance with integrity requirement 
will be exhaustively demonstrated as this would require 
an amount of data that is impracticable to collect.  The 
main contributor to the integrity validation is the analysis 
performed during the system design.  However, it is 
necessary to use techniques such as the one presented in 
this paper to examine the behavior of the protection level 
in relation to the position error in order to gain a better 
understanding of how the system is performing.  This 
technique will also help to identify when the system is not 
performing as it should be, even during times when it 
appears to be functioning correctly. 

The aim of the work presented in this paper is to develop 
a methodology for the assessment of the EGNOS Vertical 
Protection Level (VPL). The presented analysis is based 
on the processing of data from the EGNOS System Test 
Bed that is received by a network of data collection 
stations distributed throughout Europe. 

The objective is to make a statistical analysis of the 
Vertical Position Error (VPE) that can be measured at the 
output of the data collection receivers. An estimated VPL 
can be computed from the position error data enabling an 
evaluation to be made as to whether the VPL provided by 
the EGNOS system is a conservative bound on the VPE 
or not. For a given processed data set, a confidence level 
in the VPL is defined as an estimated probability that the 
VPL is a bound of the VPE.  

The analysis aims to provide the confidence levels as 
indicators of the quality of the VPL over selected data 
sets.

Presented at ION GPS 2003, Portland 1



INTRODUCTION  

Several statistical analyses dealing with the integrity of 
GNSS have been carried out in the past. They often 
addressed the issue of the VPL definition from the 
observations performed in the range domain.  

This paper proposes a VPL analysis in the position 
domain and aims to address the following question: 

Is the EGNOS provided VPL overbounding the 
position error with a sufficient level of confidence? 

The basic goal of this method is to appraise the VPL 
quality thanks to a statistical analysis of the Vertical 
Position Error (VPE). It is a kind of “plug and play” tool 
to be applied at the output of receivers1 from the ESTB 
DCN2. The analysis requires a few assumptions among 
them the independence of the processed samples. It is 
based on the following methodology: 

•  The Eurocontrol software PEGASUS processes 
data from the EGNOS System Test Bed over a 
minimum period of 6 days on a given site. The 
output of this is a data file containing VPE and 
ESTB VPL, 

•  The data is split into small intervals around 
targeted VPL (few centimeters),  

•  For each targeted VPL, VPE samples that are at 
least 360 seconds apart are selected (to ensure 
independence of the samples). Data subsets are 
then totally determined and ready to be 
processed, 

•  From each selected subset, a Gaussian modeling 
that bounds the VPE distribution (in the cdf 
overbounding sense) is defined, 

•  From this previous modeling of the VPE, a 
statistical analysis is then performed over each 
selected subset in order to compute an estimated 
probability that the VPL is a 710− bound of the 
VPE, 

•  This probability is denoted “confidence level in 
the VPL”.  

The output of the presented analysis is the confidence 
level for each targeted VPL on the given site. 

The paper begins with a short introduction of the VPL 
concept for EGNOS. 

                                                           
1 In order to assess the EGNOS SIS, the assumption of 
fault-free receivers has to be sought. 
2 EGNOS System Test Bed data collection network. It is 
composed of four permanent sites in Barcelona, Lisbon, 
Toulouse and Delft.   

I. VPL AND INTEGRITY CONCEPT FOR EGNOS 

I.1 Definition of the VPL 

According to the SARPs [1], the SBAS Vertical 
Protection Level (VPL) is defined as a bound on the 
Vertical Position Error (VPE) with a probability derived 
from the integrity requirement. It is thus one of the major 
component of the SBAS integrity mechanism.  

The VPL is computed by the user receiver using a bound 
of the standard deviation of the range measurements 
corrected with the data broadcast by the SBAS SIS. 

For each satellite contributing to the position solution, the 
SBAS corrected range measurement errors are assumed to 
have a Gaussian, independent and centered distributions. 
The SBAS corrected range measurement errors 
components are: 

•  The error on the differential correction on each 
satellite excluding atmospheric effects and receiver 

errors ( flt,iσ  should bound the standard deviation 

of this error for the thi satellite), 

•  The error on the ionospheric correction on each 

satellite ( UIRE,iσ  should bound the standard 

deviation of this error for the thi satellite), 

•  The aircraft pseudo range errors due to the 
combination of receiver and aircraft multipath 

( air,iσ should bound the standard deviation of this 

error for the thi satellite), 

•  The residual pseudo range of a tropospheric 
correction model which is defined by a standard 

mentioned in the SARPs ( tropo,iσ should bound the 

standard deviation of this error for the thi satellite). 

The overall error distribution in the measurement domain 

(for the thi satellite) is also assumed to be centered with a 

standard deviation bounded by: 

2
tropo,i

2
air,i

2
UIRE,i

2
flt,ii σ+σ+σ+σ=σ  (1) 

The knowledge of the bounds of the N standard 
deviations in the measurement domain (related to the N  
satellites which contributes to the position solution) 
allows the computation of the bound of the standard 
deviation for each component of the position domain. For 
the vertical component it gives: 

∑
=

σ⋅=σ
N

1i

2
i

2
i,Vegrityint,V s     (2) 

i,Vs are geometrical parameters: they are the partial 
derivative of the position error in the vertical direction 
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with respect to pseudo range error on the thi satellite. 

They characterize the relative geometry between the N 
satellites and the user receiver. 

Finally, the VPL is computed by multiplying by a K 
factor:  

egrityint,VVKVPL σ⋅=   (3) 

with 33.5)
2

10
1(cdfNormalK

7
1V =−=

−
−  

I.2 Link between the VPL and the integrity requirement 

The goal of this sub-section is to derive the EGNOS VPL 
requirement that will be used in the analysis from the high 
level integrity risk defined by ICAO [1] and Eurocontrol 
[2] . 

First, it could be written that: 

Integrity Risk = )biasrangeno(PP VPLmd ⋅ , VPLmdP being 

equal to the conditional probability P(VPE>VPL/no range 
bias).  

After application of SBAS corrections, the range 
measurements are assumed to be non affected by any 
range bias1, meaning that P(no range bias) is close to 1. 
Therefore, it could be written: 

Integrity Risk = VPLmdP = P(VPE>VPL)  (4) 

According to [1], ICAO defines an acceptable integrity 
risk for an approach using GNSS: 

Acceptable integrity risk = 710−  per approach (5) 

From (4) and (5) it could be deduced the following 
EGNOS requirement: 

P(VPE>VPL) = 710−  per approach   (6) 

According to Eurocontrol [2], one approach is assumed to 
last 150 seconds. Furthermore, it is commonly accepted 
that the maximum correlation time for the position error 
using EGNOS is 360 seconds (mainly due to 
ionosphere)2. Therefore, it could be assumed that there is 
one independent sample per approach. This leads to the 
EGNOS requirement that will be the basis of the analysis: 

P(VPE>VPL) = 710−  per independent sample (7) 

I.3 VPL issue 

The integrity performance of EGNOS is a significant 
contributor to safety at user level.  Therefore, the 

                                                           
1 After application of SBAS corrections, the range 
measurements are assumed to be only affected by noise. 
2 This correlation time is assumed in [3]. 

assessment of the VPL quality is a real issue and should 
answer the question: 

Is the VPL a reliable bound of the VPE related to a 
probability of 710 −−−− ? 

The next sections try to address this issue. 

II. METHODOLOGY OF THE VPL ASSESSMENT 

II.1 Objective and rational 

The objective is to assess whether the values of the VPL 
for a given data set are reliable bounds of the VPE related 
to a probability of 710− . 

In this framework, the paper proposes a statistical analysis 
of the VPE when the VPL is around a targeted value (+/- 
a tolerance). For each tested value of the VPL, the 
information being sought is the probability that the 
targeted VPL is a reliable bound of the VPE related to a 
probability of 710− . This probability is denoted  
“confidence level” in the targeted VPL. 

The paper presents a statistical analysis that aims to 
compute the confidence level in targeted VPL values from 
a 6 day (at least) data set. 

From this data set, the final results are collected in a graph 
showing the confidence level in the VPL with respect to 
the tested values of the VPL. 

II.2 Selection of the processed data 

 First level of the data selection:  

From a 6 day (at least) data file containing VPE and 
ESTB VPL, it is first necessary to select the GPS epochs 
where the ESTB VPL is around a specific targeted VPL, 
+/- a specified tolerance (nominal value of 0.125meters). 
The VPE observed at these GPS epochs are then stored.  

This selection process begins by selecting the targeted 
VPL as the lowest value of the VPL in the file and 
increasing to a maximum value of 50 meters3. 

Second level of the data selection: 

Then, in line with the SARPs, the analysis is based on the 
assumption that 360 seconds are enough to ensure 
independence of the samples. Therefore, the next step of 
the data selection is to identify samples that are at least 
360 seconds apart among the samples that were selected 
for each targeted VPL. This process is performed for each 
targeted VPL and should systematically contain the 
maximum value of the VPE (in absolute value) and its 
corresponding VPL.  

                                                           
3 According to [2], 50 meters corresponds to the 
maximum Vertical Alert Limit applicable for Civil 
Aviation. If the VPL exceeds this value, the system 
becomes unavailable for the user.  
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 Third level of the data selection:  

Finally, in order for the analysis to make statistical sense, 
the required minimum number of selected independent 
samples is fixed at 200. If this requirement is not satisfied, 
the size of the VPL interval around the targeted VPL is 
grown until at least 200 independent samples are 
included. A trade-off should be found to maximize the 
number of processed samples while minimizing the size 
of the selected VPL intervals.  

 Output of the data selection: 

From an initial data set file containing VPE and ESTB 
VPL, data are stored in several data subsets over which: 

•  The VPL is almost constant (if possible within a 
0.25 meter interval), 

•  Samples of each selected subsets are at least 360 
seconds apart to ensure independence of the VPE 
samples; however they systematically include the 
maximum absolute value of the VPE related to 
the targeted VPL, 

•  Each selected subset contains at least 200 
samples. 

II.3 Description of the statistical analysis 

The proposed statistical analysis implemented on selected 
data subsets is based on several mathematical tools that 
will be presented step by step in this section. 

First step: ideal case 

This first step makes two very simple assumptions for 
each of the selected data subsets: 

•  The VPE follows a perfect Gaussian distribution, 

•  The mean value µ and the standard deviation σ 
of the VPE are perfectly known. 

In reality these assumptions are not met. Indeed, on each 
selected data subsets the VPE might not follow a 
Gaussian distribution. Furthermore, the mean value and 
the standard deviation of the VPE, which can be 
computed are only estimates based on a limited number of 
observations. 

However, this first step is necessary in order to provide 
the reader with a simple introduction of the process.   

Under both simple assumptions mentioned above, from 
the statistical properties of the VPE, the error related to a 
probability of 710− can be simply derived. This error can 

be denoted idealVPL insofar as this value should be the 

ideal VPL for the processed data set. idealVPL  should be 

the solution of the following equation: 

7
VPL

VPL
σ2

)�t(
10dte

π2σ

11
ideal

ideal

2

2 −

−
⋅
−− =⋅

⋅
− ∫  (8) 

which is exactly the same as: 
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 The following figure illustrates this statement: 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: VPE perfectly Gaussian, µµµµ and σσσσ known 

The next steps address the fact that those simple 
assumptions are not met. 

Second step:  non Gaussian distribution of the VPE 

In general, the VPE does not follow a Gaussian 
distribution. This is especially the case when the VPE has 
a secondary peak in the tails of its distribution: 

 

 

 

 

 

  

 

 

 

Figure 2: example of a non Gaussian distribution  
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In order to cope with such events, it should be noted that a 
Gaussian modeling can be applied to a non Gaussian VPE 
distribution provided that the modeling properly bounds 
the tails of the VPE distribution. However, the following 
question should be addressed: 

With which Gaussian modeling, could the VPE 
distribution be bounded? 

The idea is to inflate the VPE standard deviation σ up to a 
value Σ so that the Gaussian modeling ( )Σ,�G  bounds (in 

the cdf overbounding sense) the tails of the VPE 
distribution, µ being the VPE mean value. This means 
that the energy contained in the tails of the Gaussian 
modeling should be above the energy contained in the 
tails of the VPE distribution. This process can be 
mathematically expressed: 

If pdf(e) is the probability density function of a 
distribution, the energy of the distribution between -∞ and 
L is:  

∫
∞−

⋅=
L

de)e(pdf)L(cdf    (10) 

Therefore, if L1 is the limit of the left tail and L2 is the 
limit of the right tail of the distribution, the overbounding 
conditions are: 

)1L(cdf)1L(cdf VPEngoverboundi ≥  

)2L(cdf1)2L(cdf1 VPEngoverboundi −≥−  

Σ is thus computed on the basis of the following 
identities: 

)1L(cdf)1L(cdf VPEngoverboundi =  

)2L(cdf1)2L(cdf1 VPEngoverboundi −=−  

 

 

 

 

 

 

  

 

 

Figure 3: overbounding the tails 

Unfortunately, µ and σ are only estimated through the 

respective values m̂ and ŝ. Therefore, instead of defining 
a Gaussian modeling ( )Σ,�G  as presented  above, a 

Gaussian modeling ( )Σ̂,m̂G  based on estimates is defined.  

Practically, the implementation of the cdf overbounding 
process consists, on the basis of another Gaussian 

modeling ( )ŝ,m̂G , in inflating ŝ so that the new Gaussian 

modeling ( )Σ̂,m̂G  bounds the tails of the VPE 

distribution. 

It can be shown that the estimate of the energy contained 
in the left tail of the cdf overbounding Gaussian 
distribution is: 

)
2ˆ
m̂1L(erf

2
1

2
1)1L(cdf)1L(E ngoverboundileft

⋅Σ
−⋅+==  (13) 

It can be shown that the estimate of the energy contained 
in the right tail of the cdf overbounding Gaussian 
distribution is: 

)
2ˆ
m̂2L(erf

2
1

2
1)2L(cdf1)2L(E ngoverboundiright

⋅Σ
−⋅−=−=  (14) 

The cdf overbounding should be sought whatever 
m̂1L ≤  and m̂2L ≥ . This means that the condition 

(11) should be satisfied whenever m̂1L ≤  and m̂2L ≥ . 

However, in order not to introduce unnecessary sigma 

inflation due to errors close to m̂ , the maximum value of 
L1 and the minimum value of L2 are defined as followed: 

%)40(E1LMAX 1
left
−=   (15) 

%)40(E2LMIN 1
right
−=   (16) 

(15) and (16) assume that the sigma inflation copes with 
80% of the left tail and 80% of the right tail, disregarding 
20 % of the overall error  within the core of the 
distribution and centered on µ (being estimated through 

m̂ ).   

It should be noted that this cdf overbounding process does 
not aim to extrapolate a 710− error by multiplying the 
inflated estimate of the standard deviation by a K factor as 
does the SBAS integrity mechanism. The only purpose of 

this process is to define two parameters m̂ and Σ̂  to be 
used in the modeling of the uncertainty of µ and σ 
(addressed in the next step). In this context, the 
assumption of a centered VPE distribution is not 
necessary as it is in the context of the EGNOS VPL 
computation.   

The next two figures illustrate the implementation of the 
cdf overbounding algorithm on selected data from the 
EGNOS System Test Bed. 

Figure 4 shows that when the tail of the VPE distribution 
has no secondary peak, the estimated standard deviation 

(11) 

(12) 

L1 L2 

Overbounding 

distribution 

VPE 

µ 
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of the Gaussian modeling is weakly inflated by a cdf 
overbounding algorithm. On this figure, it could be noted: 

 ŝ= 1.13 meters 

  Σ̂  = 1.22 meters 

 

Figure 4: weak effect of cdf overbounding 

On the other hand, figure 5 shows that when there is a 
strong secondary peak in the tail of the VPE distribution, 
the estimated standard deviation of the Gaussian 
modeling can be strongly inflated by a cdf overbounding 
algorithm. On figure 5 it should be noted: 

ŝ= 1.37 meters 

Σ̂ = 2.56 meters 

 

Figure 5 : strong effect of cdf overbounding 

It should be felt that the smaller the number of processed 
samples, the higher the sigma inflation due to a single 
anomaly in the tails of the VPE distribution. Appendix 1 
proves this statement and justifies the choice of selecting 
at least 200 samples for a data subset. 

At this level of the analysis, an estimate of the mean value 
( m̂ ) and an inflated estimate of the standard deviation 

( Σ̂ ) of the VPE are determined. These two values are 
fundamental parameters to be used for modeling the 
uncertainty of µ and σ.  

The third step of the analysis addresses the determination 
of this uncertainty: this will be the basis of the VPL 
confidence level determination. 

Third step: allowing for the uncertainty on µ and σ 

Because the statistical analysis is performed over a 
limited number of samples, the mean value and the 
standard deviation (µ and σ) of the underlying random 
process of the VPE cannot be perfectly known. Only 

estimates of them are computed (m̂ and Σ̂ ) through the 
previous step. Therefore, under this assumption it is not 
possible to compute an ideal VPL for a selected data 
subset (as was done in the first step thanks to the 
unrealistic assumption that µ and σ are perfectly known). 

However, a modeling of µ and σ based on the knowledge 

of m̂ and Σ̂ will allow the estimation of the probability 
that the targeted VPL fulfills the EGNOS requirements.  

In the frame of the analysis, this estimated probability is 
the confidence level in the VPL. 

In other words, the confidence level in the VPL is an 
estimated probability that the VPL computed using 
EGNOS broadcast data is a 710− bound of the VPE. 

The mathematical modeling of  µ and σ and the 
theoretical process to compute the VPL confidence level 
are explained in appendix 2. 

III. ESTB DATA PROCESSING FROM ENAC 

III.1 Presentation of the data processing 

The methodology presented in the previous sections was 
applied to data from ESTB DCN sites such as the ENAC 
site in Toulouse, France, between 28th May and 3rd June 
2003. 

On this 6 day data set, the following algorithm was 
implemented: 

•  Selection of subsets of VPE samples related to 
targeted VPL (from the lowest VPL value up to a 
50 meters maximum) 

•  Implementation of the cdf overbounding 

algorithm in order to compute Σ̂ , 

•  Computation of the confidence level for each 
targeted VPL thanks to a modeling of µ and σ  

based on n, m̂ and Σ̂ , 

n, m̂ and Σ̂  being respectively the number of samples, 
the estimate of the VPE mean value and the inflated 

Gaussian modeling 
before inflation 

Gaussian modeling after 
inflation 

(overbounding distribution) 
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estimate of the VPE standard deviation of the subset 
related to a targeted VPL. 

III.2 Overall results 

The results are summarized in a graph presenting the 
confidence level in the VPL with respect to targeted VPL 
(cf. figure 6).  

As depicted in figure 6, the processing of a 6 day data set 
from ENAC (from 28th May 00:00 UTC to 3rd June 2003 
12:14 UTC), makes disparate results conspicuous.  

 

Figure 6: results from Toulouse 

Good confidence levels can be noted except for a range of 
the VPL between 15 and 16 meters.  

III.3 Analysis of the poor confidence level in ENAC  

As showed in Figure 7, the poor confidence level is due to 
an anomaly in the tail of the selected VPE distribution 
when the VPL is comprised between 15 and 16 meters. 

 

Figure 7: Poor confidence level in ENAC 

The anomaly in the left tail of the VPE distribution 
induces a strong sigma inflation leading to a very poor 

confidence level below 1 %. Furthermore, for the selected 
data subset, figure 8 presents: 

•  The selected VPE samples and their 
corresponding targeted VPL, 

•  The estimated ideal VPL related to the selected 
VPE distribution, 

•  A value denoted VPL99 corresponding to a VPL 
that would have a 99 % confidence level 
according to the selected VPE, 

•  A value denoted VPL1 corresponding to a VPL 
that would have a 1 % confidence level 
according to the selected VPE, 

being understood that the estimated probability that the 
ideal VPL is below VPL99 is equal to 99%. In the same 
way, the estimated probability that the ideal VPL is below 
VPL1 is equal to 1 %. The ideal VPL is therefore likely to 
be between VPL1 and VPL991. 

 

Figure 8: poor VPL confidence level in ENAC 

Figure 8 shows that the EGNOS provided VPL is below 
the computed value VPL1. This means that the VPL 
confidence level is below 1 % for VPL values between 15 
and 16 meters. 

However, on figure 8, it should be noted that, even with 
this low confidence in the VPL the position error is 
always exceeded by the VPL so there is no integrity 
failure. 

                                                           
1 The reliability of VPL1 and VPL99 has been verified 
through a simulation described in [5]. 

VPE modeling after 
sigma inflation 

VPE 

VPL 

VPL99 

VPL1 
Esti(VPLideal) 
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III.4 Analysis of a high confidence level in ENAC 

In the majority of the cases, the confidence level in the 
VPL is very good such as in the following example. 

 

Figure 9: good confidence level in ENAC 

This example shows that the confidence level in the 
analyzed VPL is very high (by far above 99%). In a pure 
statistical sense, such a VPL seems to be very 
conservative with respect to the selected VPE. 

The VPE distribution related to the former example is 
presented in figure 10: 

 

 

Figure 10: good confidence level in ENAC 

From figure 10, it can be seen that only a small sigma 
inflation has been necessary to allow for the non Gaussian 
behaviour of the VPE distribution in its tails: indeed, both 
estimated and inflated sigma are close values. They 
respectively equal 0.88 meters and 1.27 meters. 

More generally, all the performed analyses from several 
sites have shown that poor confidence levels in the VPL 

are always due to a strong sigma inflation (which is not 
the case in the previous example).  

III. CONCLUSION AND FUTURE WORK 

More than providing results, this paper proposes a 
methodology aiming at the assessment of the ESTB VPL. 

It should be noted that the proposed statistical analysis of 
the position error over few hundreds of independent 
samples cannot formally be a complete validation tool. 
On the other hand, this methodology may provide 
indicators of the quality of the VPL. 

Therefore, it will contribute to a better knowledge and 
understanding of the integrity mechanism and it will serve 
to highlight periods when the integrity performance 
should be analyzed in detail using other methods.   

The implementation of the technique on real data sets has 
showed that no anomaly in the tails of the VPE 
distribution leads to high VPL confidence levels and poor 
VPL confidence levels are due to anomalies in these tails. 
Therefore, further analyses should be carried out in order 
to identify why such anomalies occur while not being 
compensated by a VPL increase.   

Furthermore, the presented analysis is based upon ESTB 
data. The end of the EGNOS development phase being 
planned for the first quarter of 2004, the proposed 
methodology should be applied to the EGNOS Signal In 
Space when it will be available.  

Finally, as this analysis has only addressed the vertical 
protection levels a similar methodology could be 
developed to assess the HPL. 
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APPENDIX 1: Impact of the number of the processed 
samples on sigma inflation 

The sigma inflation applied on the data (on the basis of 
the cdf overbounding algorithm) is necessary to take the 
non Gaussian behavior of the VPE distribution into 
account generally due to an anomaly in the tails of the 
distribution.  

Indeed, through the analysis of the ESTB data it should be 
noted that the non Gaussian behavior of the VPE is 
generally due to an anomaly in the tails of the 
distribution. 

In order to appraise the impact of the processed samples 
number on the sigma inflation, a simulation has been 
carried out. The simulation assumes a centered VPE, 
having a 1 meter standard deviation and following a 
Gaussian distribution except the tails that contain a single 
VPE sample of 10 meters as depicted in the following 
figure: 

 

Figure 11: simulated VPE distribution (269 samples) 

The question addressed in this appendix is: 

How does the number of the processed samples help to 
mitigate the inflation of the VPE standard deviation due 
to a single error in the tails of the VPE distribution? 

The scenario of simulation is based on the error 
previously introduced (considering a 10 meter single VPE 
in the tail of the distribution) with the number of samples 
varying from 30 to 1000.  

Intuitively it can be felt that the higher the number of 
samples, the smaller the sigma inflation due to a single 
error in the tails of the distribution. This conclusion is 
confirmed by simulation results as illustrated in the next 
figure: 

 

Figure 12: sigma inflation vs  number of samples 

Figure 12 shows that the sigma inflation applied in order 
to cover a tail anomaly becomes strong below 200 
samples. From 30 to 200 samples, the inflated sigma is 
divided by a 1.3 factor whilst being divided by a 1.2 
factor from 200 to 1000 samples. 

The same conclusion could be drawn by considering a 
smaller anomaly in the tails (for instance a 4 meter single 
error) as depicted in figure 13: 

 

Figure 13: sigma inflation vs number of samples 

Therefore, the selection of at least 200 samples seems to 
be a good trade-off between a reasonable sigma inflation 
and a reasonable size of a processed data file. 

 

 

 

Gaussian modeling after 
inflation 

(overbounding distribution) 

Gaussian modeling 
before inflation 

Single error 
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APPENDIX 2: UNCERTAINTY ON µµµµ AND σσσσ 

Modeling of µµµµ and σσσσ 

For each selected data subset related to a targeted VPL, an 
estimate of  µ and σ (that are respectively the mean value 
and the standard deviation of the VPE) can be computed. 
Those estimates are theoretically random; µ and σ are 
unknown and deterministic. 

In the frame of the analysis, roles are switched insofar as 
µ and σ are considered as two random variables and the 
estimates will be considered as being deterministic. This 
allows the computation of the VPL confidence level1.  

In this theoretical context, the purpose of this section is to 
determine the joint probability function of  µ and σ. It will 
be noted that this function depends on three parameters: 

•   n, the number of independent samples over the 
selected data subset, 

•  m̂ , the estimate of µ, 

•  Σ̂ , the inflated estimate2 of σ. 

In order to express the joint probability density function f 
of µ and σ, it is useful to express both probability density 
functions of µ and σ, respectively )m(fµ and )s(fσ . 

Knowing that )m(fµ  is the derivative function of the 

distribution function )m(Fµ  of µ, it is useful to express 

)m(Fµ . By definition, ( )mP(m)�F ≤µ=   

Assuming that 1
)1n(t−

−  is the inverse function of the 

student-t law with (n-1) degrees of freedom, and by 
writing: 

n

ˆ
)δ(tm̂m 1

)1n(
Σ⋅+= −

−    (17) 

a theorem of [4], states that: 

δ)
n

ˆ
)δ(tm̂m�(P)m(F 1

)1n(� =Σ⋅+=≤= −
−  (18) 

Using another property mentioned in [4], under the 
assumption that n>30 (a fortiori when n>200 as requested 
in appendix 1), the following approximation can be made: 

2n
n)(z)(t 11

)1n( −⋅δ=δ −−
−     (19) 

                                                           
1 The confidence level is an estimated probability that the 
VPL is a 710− bound of the VPE. 

2 This estimate is inflated in order to cope with the 
anomalies in tails of the VPE distribution.  

(where )(1 δ−z  is the inverse of the normal law N(0,1)) 

Therefore, 
2n

ˆ
)δ(zm̂m 1

−
Σ⋅+= −     (20) 

And then, 2n
ˆ
m̂m)δ(z 1 −⋅

Σ
−=−    (21) 

By definition, ∫
δ

∞−

−

−

⋅⋅
π

=δ
)(z

2

u
1

2

due
2
1                (22) 

Therefore, by using (18), (21) and (22) the following 
expression of )m(Fµ  can be written: 

due
π2

1)m�(P)m(F
2n

ˆ
m̂m

2

u
�

2

⋅⋅=≤= ∫
−⋅

Σ
−

∞−
−

 (23) 

Finally, knowing that dm
)m(dF)m(f µ

µ = , the probability 

density function )m(fµ  of µ can be expressed: 

( )2
2

m̂mˆ2
2n

� eˆ
1

π2
2n)m(f

−⋅
Σ⋅
−−

⋅
Σ

⋅−=  (24) 

In the same way, knowing that )s(fσ  is the derivative 

function of the distribution function )s(Fσ of σ, it is 

useful to express )s(Fσ . By definition, 

( )sP(s)F ≤σ=σ . 

In order to find an expression of  )s(Fσ , an intermediate 

random variable X should be defined:  

2

2

σ

ˆ)1n(
X

Σ⋅−
=    (25) 

Thanks to the assumption of independence of the n 
selected samples, it can be stated that X follows a chi-
square law with (n-1) degrees of freedom: 

∫
+∞

− ⋅χ=≥
x

2
)1n( dt)t()xX(P   (26) 

 By writing 
2

2

s

ˆ)1n(
x

Σ⋅−
= , it could be deduced: 

{ } { }sσ
s

ˆ)1n(

σ

ˆ)1n(
xX 2

2

2

2

≤⇔










 Σ⋅−

≥
Σ⋅−

⇔≥   (27) 

This allow deducing ( )sP ≤σ : 
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( )












 Σ⋅−
≥=≤=

2

2

s

ˆ)1n(
XPsσP(s)σF , or: 

∫
+∞

Σ⋅−
− ⋅=

2

2

s

ˆ)1n(

2
)1n( dt)t(χ(s)σF , or: 

∫

Σ⋅−

− ⋅−=
2

2

s

ˆ)1n(

0

2
)1n( dt)t(χ1(s)σF   (28) 

Finally, knowing that ds
)s(dF)s(f σ

σ = , the probability 

density function )s(fσ  can be expressed: 













 Σ⋅−
⋅

Σ⋅−⋅
= − 2

2
2

)1n(3

2

σ
s

ˆ)1n(
χ

s

ˆ)1n(2
)s(f

 (29) 

It is now possible to conclude on the expression of the 
joint probability density function of both random 
variables µ and σ. Indeed, knowing that µ and σ are 
independent, it can be stated: 

)s(f)m(f)s,m(f σµ ⋅=  

Therefore, through the knowledge of )m(fµ  and )s(fσ  

given by (24) and (29), the function f(µ,σ) is now totally 
determined: 

=)σ,�(f  














−⋅

Σ⋅
−−

− ⋅












 Σ⋅−
⋅












 Σ⋅−⋅⋅−
2

2
)m̂�(

ˆ2

)2n(

2

2
2

)1n(3
e

σ

ˆ)1n(
χ

σ

ˆ
π

)2n(2
)1n(  

(31) 

Computation of the VPL confidence level 

Introduction 

For each selected data subset related to a targeted VPL, 
the modeling of µ and σ introduced in the previous 
section allows the  computation of an estimated 
probability that the VPL is a 710− bound of the VPE: this 
probability is referred to as the confidence level in the 
targeted VPL. 

The computation process is presented through several 
steps. 

 

First step of the process presentation 

A theoretical assumption should be made : over each 
selected data subset related to a targeted VPL, each 
sample of the VPE is assumed to follow the same 
Gaussian distribution totally determined by its mean value 
µ and its standard deviation σ1. From  this assumption, the 
following statement can be concluded: The probability 
that at least one VPE sample exceeds the VPL over the 
selected data subset is a function of both µ and σ. This 
function is denoted )σ,�(g and will be expressed later on. 

Second step of the process presentation 

For each selected data subset, µ and σ are modeled as two 
random variables on the basis of: 

•  n, being the number of samples for the selected 
data subset, 

•  m̂ , being the estimate of the VPE mean value  
for the selected data subset, 

•  Σ̂ , being the inflated estimate of the VPE 
standard deviation for the selected data subset 
after a cdf overbounding process. 

Therefore,  the probability that the VPE exceeds the 
targeted VPL over the selected data subset could be 
modeled as a random variable that could be denoted Z: 

)σ,�(gZ=  

Third step of the process presentation 

From the previous step, a theoretical expression of the 
VPL confidence level (denoted CL) over the selected data 
subset can be written:  

{ }nRZPCL ≤=  

where nR  is the acceptable probability that at least one of 
the n independent VPE samples over the subset exceeds 
the VPL. nR  will be expressed later on thanks to the 
EGNOS requirement for the VPL introduced in §I.2. 

In another way, an equivalent equation can be expressed: 

∫∫ σ⋅µ⋅σµ=
D

dd),(fCL
 

where f(µ,σ) is the joint probability density function of 
both random variables µ and σ expressed in (31), and the 
domain D of integration is defined as follows: 

                                                           
1 In fact, the VPE does not follow a Gaussian distribution. 
However, one can make this assumption because the 
Gaussian modeling should bound the VPE distribution 
through a cdf overbounding algorithm. 

(30) 

(34) 

(32) 

(33) 
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{ } { }nRZD),( ≤⇔∈σµ    (35) 

{ } { }nR),(gD),( ≤σµ⇔∈σµ   (36) 

The computation of (34) requires: 

•  the expression of nR , 

•  the expression of )σ,�(g , 

•  a frame of the domain D of integration. 

Expression of nR  

For the thi  sample of the selected data subset, the event 

denoted iA  is defined: 

{ }iii VPLVPEA >=   (37) 

The probability (denoted nP ) that at least one VPE of the 
subset exceeds its corresponding VPL can be expressed 
by using iA : 

( )�
n

1i
in APP

=
=   (38) 

By assuming that the n events iA  are independent, the 
following identity can be written: 

( ) [ ])A(P11AP1P i
n

1i

n

1i
in −−=−= ∏∏

==
 (39) 

Knowing that the EGNOS requirement leads to 
7i 10)A(P −≤  per independent sample (see § I.2), the 

requirement nR  for a n sample data subset can be 
expressed: 

[ ]7
n

1i
nn 1011RP −

=
−−=≤ ∏   (40) 

Finally,  

( ) 7n7n 10n1011R −− ⋅≅−−=  (41) 

Expression of g(µ,σ) 

Assuming that over each selected subset every VPE 
sample follows the same Gaussian distribution1 (totally 
determined by µ its mean value and σ its standard 
deviation), g(µ,σ) should express the probability nP  that 
at least one VPE sample of the subset exceeds the VPL. 

                                                           
1 This is assumed to be met because the selected VPE 
samples are related to close values of the VPL.   

The probability )VPLVPE(P)A(P iii ≥= can be 

written in the following way: 

{ } ∫
+

−

⋅

−
−

⋅⋅
⋅

−=∈∀
i

i

2

2

VPL

VPL

σ2

)�t(

i dte
π2σ

11)A(P,n,...,1i   (42) 

From (42) an equivalent expression can be derived: 

{ } ,n,...,1i∈∀  


















⋅σ
µ−+









⋅σ
µ+⋅−=

2

VPL
erf

2

VPL
erf

2
11)A(P

ii
i  (43) 

Finally, knowing that g(µ,σ) = nP , an expression of 
g(µ,σ) can be derived from (39) and (43): 

∏
=


















⋅
−+









⋅
+⋅−=

n

1i

ii
n 2σ

�VPL
erf

2σ

�VPL
erf

2
11)σ,�(g  (44) 

Frame of the domain D of integration 

In order to compute the confidence level in the VPL for a 
selected data subset, one should have an idea of the frame 
of the integration domain D for the integral (34). The 
knowledge of a frame of D would allow the 
implementation of an algorithm for computing (34). 

From (44) it can be proven that: 

),(g),0(g,0,0 σµ≤σ>σ∀≠µ∀    (45) 

Furthermore, ∀µ  the partial function p(σ)=g(µ,σ) is 
increasing. It can be deduced that the biggest value of σ 
for which g(µ,σ) remains below nR  is obtained when 
µ=0. Therefore, the maximum value of σ within the 
integration domain D belongs to the Oσ axis (when µ = 
0). It can also be shown that the maximum absolute value 
of µ within D is necessarily below the maximum value of 
the VPL over the selected interval:   

{ }
( )i

n,...,1i

VPL,D),( MAX
∈

≤µ∈σµ∀  (46) 

A frame of the domain D of integration can thus be 
illustrated by the following figure: 

 

 

 

 

 

Figure 14: domain D of integration 
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