Artistic resizing: a technique for rich scale-sensitive vector graphics

Pierre Dragicevic, Stéphane Chatty, David Thevenin, Jean-Luc Vinot

To cite this version:

HAL Id: hal-01021746
https://hal-enac.archives-ouvertes.fr/hal-01021746
Submitted on 4 Sep 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Artistic Resizing: A Technique for Rich Scale-Sensitive Vector Graphics

Pierre Dragicevic
University of Toronto
dragice@dgp.toronto.edu

Stéphane Chatty
IntuiLab
chatty@intuilab.com

David Thevenin
IntuiLab
thevenin@intuilab.com

Jean-Luc Vinot
DSNA / DTI / R&D
vinot@cena.fr

Artistic Resizing’s inference algorithm is based on a simple bivariate geometry interpolation technique we call orthogonal interpolation. It requires a set of graphic groups (variants) that share the same structure and have a bounding box. Each local affine transformation is extracted and interpolated independently from the others. The first line of the matrix is linearly interpolated along the width of the bounding boxes, whereas the second line is interpolated along their height. The assumption is that horizontal (resp. vertical) resizing only results in horizontal (resp. vertical) motions, i.e. translations, scales and shears. On more than two examples, two monovariate piecewise linear interpolations can thus be applied, eliminating the need for multivariate techniques.

Although simple, orthogonal interpolation has a number of useful properties. First, its results are independent from the graphics structure, provided that each tree path contains at most one varying transformation (graphics can be normalized to conform to this rule). Second, interesting geometrical properties are preserved on interpolated graphics, such as algebraic measures (allowing the specification of fixed margins and alignments), relative ratios (allowing centering), contact and parallelism.

Whereas advanced image interpolation techniques have been proposed in a variety of domains, Artistic Resizing shows that a minimalist approach can successfully serve the purposes of GUI resizing. Its properties differ from those of rigid interpolation schemes used in 2D and 3D computer animation [Shoemake et al. 1992], reflecting different requirements: GUI resizing is bivariate, non-rigid, axis-dependant and rarely involves rotations.

Artistic Resizing builds upon a reasonable trade-off between power and simplicity. Because it does not rely on an extensive search for invariants [Kurlander et al. 1993], it is not subject to combinatorial explosion and is efficient even on extremely complex graphics. In contrast with most by-example systems, it is predictable and does not require the user to prune unintended rules. Artistic Resizing additionally allows the expression of more subtle, non-linear resizing behaviors and can be easily combined with higher-level layout models (Figure 1, right).

Acknowledgements

Thanks to Michel Beaudouin-Lafon, Sylvie Athènes, Yves Rinato, Stéphane Conversy, Sandra Basnyat, Frédéric Jourdan, Céline Schlienger and Alexandre Lemort for their help.

References

Figure 1: On the left, vector graphics with non-uniform resizing: the 2nd and 4th variants have been drawn in Illustrator, the other ones are interpolated. On the bottom right, a dock using Artistic Resizing.