Utilisation d'outils de Visual Data Mining pour l'exploration d'un ensemble de règles d'association

Abstract : Data Mining aims at extracting maximum of knowledge from huge databases. It is realized by an automatic process or by data visual exploration with interactive tools. Automatic data mining extracts all the patterns which match a set of metrics. The limit of such algorithms is the amount of extracted data which can be larger than the initial data volume. In this article, we focus on association rules extraction with Apriori algorithm. After the description of a characterization model of a set of association rules, we propose to explore the results of a Data Mining algorithm with an interactive visual tool. There are two advantages. First it will visualize the results of the algorithms from different points of view (metrics, rules attributes). Then it allows us to select easily inside large set of rules the most relevant ones.
Document type :
Conference papers
Complete list of metadatas

Cited literature [9 references]  Display  Hide  Download

https://hal-enac.archives-ouvertes.fr/hal-01022276
Contributor : Laurence Porte <>
Submitted on : Tuesday, July 22, 2014 - 2:36:21 PM
Last modification on : Thursday, June 27, 2019 - 4:27:48 PM
Long-term archiving on : Thursday, November 20, 2014 - 6:10:11 PM

File

367.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Gwenael Bothorel, Mathieu Serrurier, Christophe Hurter. Utilisation d'outils de Visual Data Mining pour l'exploration d'un ensemble de règles d'association. IHM 2011, 23ème Conférence Francophone sur l'Interaction Homme-Machine, Oct 2011, Nice, France. pp.Article N° 12, ⟨10.1145/2044354.2044369⟩. ⟨hal-01022276⟩

Share

Metrics

Record views

432

Files downloads

551