Optimistic Rough Sets Attribute Reduction using Dynamic Programming

Abstract : Nowadays, and with the current progress in technologies and business sales, databases with large amount of data exist especially in Retail Companies. The main objective of this study is to reduce the complexity of the classification problems while maintaining the prediction classification quality. We propose to apply the promising technique Rough set theory which is a new mathematical approach to data analysis based on classification of objects of interest into similarity classes, which are indiscernible with respect to some features. Since some features are of high interest, this leads to the fundamental concept of "Attribute Reduction". The goal of Rough set is to enumerate good attribute subsets that have high dependence, discriminating index and significance. The naïve way of is to generate all possible subsets of attribute but in high dimension cases, this approach is very inefficient while it will require 2d - 1 iterations. Therefore, we propose the Dynamic programming technique in order to enumerate dynamically the optimal subsets of the reduced attributes of high interest by reducing the degree of complexity. Implementation has been developed, applied, and tested over a 3 years historical business data in Retail Business (RB). Simulations and visual analysis are shown and discussed in order to validate the accuracy of the proposed tool.
Type de document :
Article dans une revue
International Journal of Computer Science & Engineering Technology, KEJA Publications, 2010, 1 (2), pp 21-31. 〈http://www.ijcset.com/docs/IJCSET10-01-02-01.pdf〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-01078287
Contributeur : Céline Smith <>
Soumis le : mardi 28 octobre 2014 - 15:26:00
Dernière modification le : lundi 21 mars 2016 - 17:29:27
Document(s) archivé(s) le : vendredi 14 avril 2017 - 14:14:19

Fichier

Mora-Camino_IJCSET2010.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01078287, version 1

Collections

Citation

Walid Moudani, Ahmad Shahin, Fadi Chakik, Felix Antonio Claudio Mora-Camino. Optimistic Rough Sets Attribute Reduction using Dynamic Programming. International Journal of Computer Science & Engineering Technology, KEJA Publications, 2010, 1 (2), pp 21-31. 〈http://www.ijcset.com/docs/IJCSET10-01-02-01.pdf〉. 〈hal-01078287〉

Partager

Métriques

Consultations de la notice

67

Téléchargements de fichiers

45