I. H. Witten and F. Eibe, Data mining, ACM SIGMOD Record, vol.31, issue.1, 2003.
DOI : 10.1145/507338.507355

J. A. Micheal, . Berry, and S. Gordon, Linoff: Data mining techniques for marketing, sales and customer relationship management, 2004.

M. Awad, K. Latifur, K. J. Ezawa, and S. W. Norton, Design and Implementation of data mining tools, Constructing Bayesian networks to predict uncollectible telecommunications accounts Business Intelligence: Data Mining and Optimization for Decision Making, 1996.
DOI : 10.1201/9781420045918

R. Jensen and Q. Shen, A Rough Set ? Aided system for Sorting WWW Bookmarks, Web Intelligence: Research and Development, pp.95-105, 2001.

R. Jensen, Q. Shen, and Z. Pawlak, Fuzzy-rough attribute reduction with application to web categorization. Fuzzy Sets and SystemsRough Sets:Theoretical aspects of reasoning about data, pp.469-485, 1991.

G. H. John, R. Kohavi, and K. Pfleger, Irrelevant Features and the Subset Selection Problem, Proc. of 11th Intl. Conf. on Machine Learning, pp.121-129, 1994.
DOI : 10.1016/B978-1-55860-335-6.50023-4

K. Kira and L. A. Rendell, The Feature selection Problem: Traditional Methods and a New Algorithm, Proceedings of AAAI, pp.129-134, 1992.

R. Kohavi, Useful feature subsets and Rough set reducts, Proceedings of the 3rd Intl. Workshop on Rough Set and Soft Computing, pp.310-317, 1994.

I. D. Untsch, G. Gediga, and H. S. Nguyen, Rough set data anaylsis in the KDD process, 1999.

A. Kusiak, Rough Set Theory:A Datamining Tool for Semiconductor Manufacturing, IEEE Trans. on Electronics Packaging Manufacturing, vol.24, issue.1, 2001.

Q. Shen and . Chouchoulas, A modular approach to generating fuzzy rules with reduced attributes for the monitoring of complex systems, Engineering Applications of Artificial Intelligence, vol.13, issue.3, pp.263-278, 2000.
DOI : 10.1016/S0952-1976(00)00010-5

H. Liu and H. Motoda, Feature Extraction Construction and Selection: A Data mining Perspective, Kluwer International Series in Engineering and Computer Science, 1998.
DOI : 10.1007/978-1-4615-5725-8

H. Liu and R. Setiono, A probabilistic approach to feature selection: a filter solution, Proceedings of the 9th International conference on Industrial and Eng. Applications of AI and ES, pp.284-292, 1996.

H. Liu and R. Setiono, Feature selection and classification?A probabilistic wrapper approach, Proceedings of the 9th Intl. Conf. on Indust. and Eng. Applications of AI and ES, pp.419-424, 1996.

N. Zhong, J. Dong, and S. Ohsuga, Using Rough Sets with Heuristics for Feature Selection, Journal of Intelligent Information Systems, vol.16, issue.3, pp.199-214, 2001.
DOI : 10.1023/A:1011219601502

X. Hu, T. Y. Lin, and J. Jianchao, A New Rough Sets Model Based on Database Systems, Fundamental Informatica, pp.1-18, 2004.
DOI : 10.1007/3-540-39205-X_15

M. Modrzejewski, Feature selection using rough sets theory, Proceedings of the 11th International Conference on Machine Learning, pp.213-226, 1993.
DOI : 10.1007/3-540-56602-3_138

E. Orlowska, Incomplete Information: Rough Set Analysis, 1998.
DOI : 10.1007/978-3-7908-1888-8

Z. Pawlak, Rough sets, International Journal of Computer & Information Sciences, vol.8, issue.3, pp.341-356, 1982.
DOI : 10.1007/BF01001956

Z. Pawlak, Rough Sets:Theoritical Aspects and Reasoning about Data, 1991.

L. Polkowski, S. Tsumoto, and T. Y. Lin, Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems, 2000.
DOI : 10.1007/978-3-7908-1840-6

H. Almuallim and T. G. Dietterich, Learning with many irrelevant features, 9th National Conference on Artificial Intelligence, pp.547-552, 1991.

B. Raman and T. R. Loerger, Instance-based filter for feature selection, Journal of Machine Learning Research, pp.1-23, 2002.

C. Traina, L. Wu, and C. Faloutsos, Fast Feature selection using the fractal dimension, Proc. of the 15th Brazilian Symp. on DB (SBBD), P.158, 2000.

Y. Yang and T. C. Chiam, Rule discovery based on rough set theory, Proceedings of the Third International Conference on Information Fusion, pp.11-16, 2000.
DOI : 10.1109/IFIC.2000.862688

K. Thangavel, Q. Shen, and A. Pethalakshmi, Application of Clustering for Feature selection based on rough set theory approach, AIML Journal, vol.6, issue.1, pp.19-27, 2006.

N. Zhong and A. Skowron, A Rough Set-Based Knowledge Discovery Process, Intl. Journal of App. Mathematics and Comp. Sc, vol.11, issue.3, pp.603-619, 2001.

A. Almuallim and T. G. Dietterich, Learning with many irrelevant features, 9th National Conference on Artificial Intelligence, pp.547-552, 1991.

R. E. Bellman, Dynamic Programming, 1957.

E. Moudani, W. Mora-camino, and F. , A dynamic approach for aircraft assignment and maintenance scheduling by airlines, Journal of Air Transport Management, vol.6, issue.4, pp.233-237, 2000.
DOI : 10.1016/S0969-6997(00)00011-9