From Visualization to Association Rules : an automatic approach

Abstract : The main goal of Data Mining is the research of relevant information from a huge volume of data. It is generally achieved either by automatic algorithms or by the visual exploration of data. Thanks to algorithms, an exhaustive set of patterns matching specific measures can be found. But the volume of extracted information can be greater than the volume of initial data. Visual Data Mining allows the specialist to focus on a specific area of data that may describe interesting patterns. However, it is often limited by the difficulty to deal with a great number of multi dimensional data. In this paper, we propose to mix an automatic and a manual method, by driving the automatic extraction using a data scatter plot visualization. This visualization affects the number of rules found and their construction. We illustrate our method on two databases. The first describes one month French air traffic and the second stems from 2012 KDD Cup database.
Type de document :
Communication dans un congrès
SCCG 2013, Spring Conference on Computer Graphics, May 2013, Smolenice, Slovakia. pp 57-64, 〈10.1145/2508244.2508252〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-01078330
Contributeur : Laurence Porte <>
Soumis le : mardi 16 décembre 2014 - 17:57:19
Dernière modification le : mercredi 23 mai 2018 - 17:58:06
Document(s) archivé(s) le : samedi 15 avril 2017 - 09:35:04

Fichier

057-bothorel.done.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Gwenael Bothorel, Mathieu Serrurier, Christophe Hurter. From Visualization to Association Rules : an automatic approach. SCCG 2013, Spring Conference on Computer Graphics, May 2013, Smolenice, Slovakia. pp 57-64, 〈10.1145/2508244.2508252〉. 〈hal-01078330〉

Partager

Métriques

Consultations de la notice

310

Téléchargements de fichiers

138