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Abstract

Global air-traf�c demand is continuously increasing. To handle such a tremendous traf�c volume while maintaining

at least the same level of safety, a more ef�cient strategic trajectory planning is necessary. In this work, we present

a strategic trajectory planning methodology which aims to minimize interaction between aircraft at the European-

continent scale. In addition, we propose a preliminary study that takes into account uncertainties of aircraft positions

in the horizontal plane. The proposed methodology separates aircraft by modifying their trajectories and departure

times. This route/departure-time assignment problem is modeled as a mixed-integer optimization problem. Due to

the very high combinatorics involved in the continent-scale context (involving more than 30,000 �ights), we develop

and implement a hybrid-metaheuristic optimization algorithm. In addition, we present a computationally-ef�cient

interaction detection method for large trajectory sets. The proposed methodology is successfully implemented and

tested on a full-day simulated air traf�c over the European airspace, yielding to an interaction-free trajectory plan.
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I. INTRODUCTION

Air traf�c management (ATM) is a system that assists and guides aircraft from a departure aerodrome to a

destination aerodrome in order to ensure their safety, while minimizing delays and airspace congestion. According

to standard separation requirements [1], aircraft that operate in the Terminal Maneuvering Area1 (TMA) environment

are required to be vertically separated by at least Nv = 1,000 feet (ft), and to be horizontally separated by a minimum

of NhT MA = 3 nautical miles (NM). In the en-route2 environment up to FL3410, the minimum horizontal separation

is increased to Nh = 5 NM [1].

Aircraft are considered to be in con�ict when such a minimum separation requirement is violated. In other words,

each aircraft has a protection zone (or protection volume) de�ned by a three-dimensional cylinder, as shown in

Figure 1, in which other aircraft are not allowed to enter. A con�ict situation does not necessary lead to a collision;

however, it is a situation that controllers must avoid.

Nh 

Nv 

Figure 1: The separation-norm cylinder.

To ensure such a separation between aircraft, the airspace is partitioned into different sectors and a group of

controllers is assigned to each sector. The controllers are responsible for maintaining aircraft at a safe distance from

each other by applying separation rules. As the air-traf�c demand keeps on growing, each controller must handle

more and more aircraft.

To cope with increasing air-traf�c demand, the ATM paradigm in Europe is being transformed towards a concept

of Trajectory Based Operations (TBOs). This is the concern of the Single European Sky ATM Research (SESAR)

project, which is a major collaborative project aiming at modernizing the European ATM system. In this new ATM

paradigm, an aircraft �ying through the airspace will be required to follow a 4D (3 spatial dimension + time)

trajectory de�ned by a sequence of 4D coordinates (x; y; z; t) with high precision [2]. In other words, aircraft

will be required to arrive at a speci�c 3D spatial position at a speci�c time. In fact, the introduction of this new

ATM concept permits to alleviate the controller’s tactical workload by shifting it to the strategic phase, so that

the separation of all aircraft is ensured. The concept of 4D strategic decon�iction that aims to generate con�ict-

free trajectories for aircraft from origin to destination airports is introduced in the Innovative Future Air Transport

1Terminal maneuvering area (or Terminal Control Area (TCA) in the U.S. and Canada) is the airspace around a major airport which is

extending upward from the surface of the Earth up to 10,000 feet above mean sea level.
2Aircraft traveling between two airports is considered to be in the en-route airspace once it leaves the TMA zone.
3Flight level (FL) is a pressure altitude, expressed in hundreds of feet, e.g. altitude of 41,000 feet is referred to as FL 410.
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System (IFATS) project [3] and the 4 Dimension Contract-Guidance and Control (4D CO-GC) project [4]. This

4D trajectory concept will reduce recourse to controllers’ intervention during the tactical phase. As a result, more

�ights can be accommodated by the controllers in a given airspace at a given time.

In this work, we propose a methodology to address such a strategic planning of trajectories at a continent scale.

To our knowledge, no other research work addresses globally the 4D strategic decon�iction problem for such a

large-scale problem. Instead of trying to ensure aircraft separation by solving each con�ict locally, we focus on

minimizing the global interactions between trajectories. An interaction occurs when two or more trajectories have

an effect on each other; for instance, when multiple trajectories occupy the same space at the same period of time.

Given an initial set of trajectories, the approach proposed in this paper separates these trajectories by allocating an

alternative route and an alternative departure time to each participating �ight. This route/departure-time allocation

problem is formulated under the form of mixed-integer optimization problem. The objective is to minimize the total

number of interactions between trajectories during a full day of traf�c over Europe.

In reality, aircraft position may be subjected to uncertainties due to external events such as wind conditions,

external temperature, etc. To increase robustness of the trajectories we compute, we also introduce in this paper

a preliminary study taking into account uncertainties on aircraft position in the trajectory optimization process.

An optimal route and a departure time for each �ight are obtained through an iterative process which relies on a

hybrid-metaheuristic optimization algorithm. The proposed methodology is implemented and tested on one day of

air-traf�c data over the European airspace which involves more than 30,000 �ights.

The following sections of this paper are organized as follows. Section II reviews previous related works on strategic

trajectory planning. Section III introduces our mathematical model. Section IV proposes an ef�cient method for

detecting interactions between aircraft trajectories in a large-scale context. Section V presents a hybrid-metaheuristic

optimization algorithm which relies on simulated annealing and on a hill-climbing local-search method, to solve

the problem. Finally, numerical results are presented in Section VI.

II. PREVIOUS RELATED WORKS AND PROPOSAL OUTLINE

During recent years, numerous research works on the trajectory planning problem based on deterministic and

metaheuristic optimization approaches have been conducted. A comparison of the different optimization methods

used for air-traf�c management is provided in [5]. In the strategic planning framework, aircraft trajectories can be

separated in many different ways. One of the most used methods is to modify the departure time of aircraft. This

is commonly referred to as ground delay or ground holding, and examples of related work are [6], [7].

Delaying aircraft on the ground is effective since it reduces fuel consumption due to the extra distance aircraft

would otherwise have to �y to avoid congested areas. Furthermore, it avoids aircraft to absorb the requested delay

in holding patterns, which also increase fuel consumption. However, with increasing demand, signi�cant delays still

have to be assigned to a large number of aircraft in order to meet all airspace sector capacity constraints.

Another idea to separate trajectories is based on speed regulations; it is used for instance in [8] and [9]. Speed

regulations introduce additional degree of freedom to the trajectory design. However, it requires numerous extensive

and �ne-tuned computation, which is not suitable to implement in a large-scale problem.

Other commonly-used strategies to separate aircraft trajectories rely on modifying the shape of trajectories (re-

routing), or proposing alternative �ight levels, or a combination of any of the above-mentioned methods. The
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optimization problem that concentrates on combining ground holding and re-routing is referred to as the air-traf�c

�ow management rerouting problem. This problem is shown to be NP hard4 in [11] where optimal ground-holding

times and routes are obtained by solving a 0-1 integer model taking into account airspace sector capacity. To

simplify the problem, instead of considering individually each trajectory, several studies focus on separating the

�ow of trajectories. For instance, [12] addresses large-scale (one day traf�c over France) air-traf�c �ow problems

via a �ow-based trajectory allocation, where the optimal separated 3D trajectory is obtained using A* algorithm or

a global search strategy genetic algorithm (GA).

In [13] and [14], integer optimization approaches are used to allocate ground delays and rerouting options to

trajectory �ows taking into account airspace sector capacity constraints. In [15], a ground-holding is assigned to each

aircraft and an optimal �ight level is subsequently allocated to each �ow of aircraft using constraint programming.

Despite advantages in terms of reduced computation time, the �ow-based trajectory planning cannot separate

aircraft that belong to the same �ow of trajectories. The authors of [16] introduce a mixed-integer programming

model to minimize traveling time, operating/fuel cost, air/sound pollutions subjected to separation and technical

constraints. Their decision variables are the arcs and nodes (in a 3D-mesh network), speeds and departure/arrival

times for each �ight. The problem is solved by an exact deterministic method on instances limited to problem

involving 10 �ights. Further works that focus on managing each individual �ight, but in large problems, can be

found for instance in [17] and [18]. In these works, congestion in the airspace sectors is minimized by allocating

to each �ight optimal departure times and alternative routes (based on route-beacon navigation) using GAs. The

results show advantages of using the route/departure-time allocation technique to alleviate airspace congestion and

also show that GA is very ef�cient in solving highly complex problems. Nevertheless, the con�icts between aircraft

trajectories are not managed. Moreover, GA is not well adapted for large-scale 4D trajectory planning due to

excessive memory requirement intrinsic to population-based optimization algorithms whose performance depends

on the population size. The reader interested in a survey on modeling and optimization in air traf�c is referred to

the recent book [19] where several problems are addressed using GA.

In [20], the authors use a ground-holding method to solve 4D trajectory decon�iction problems. Their objective

is to minimize the overall delays while respecting the con�ict constraints. The authors rely on pairwise comparisons

to detect con�icts between trajectories. The proposed algorithm is able to address a problem involving up to 9,500

�ights. However, relying only on the departure-time adjustment, the proposed method must allocate signi�cant

delays in order to solve all the con�icts. Moreover, the pairwise con�ict detection algorithm is not well adapted

for continent-scale problems due to excessive computation time requirements.

Uncertainty of aircraft velocity is taken into account in the 4D trajectory decon�iction problem of [21]. Instead

of a point, the aircraft position at any given time is represented by a bounded 3D envelope whose size grows

with time. In [22], the authors propose a 4D trajectory decon�iction method using a light-propagation algorithm.

Uncertainty of aircraft trajectory in the time domain is considered by modeling the aircraft arrival time to a given

point as a time segment. The uncertainty increases the dif�culty of the problems, and it reduces the solution space.

4According to the famous NP 6= P conjecture, a Non-deterministic Polynomial-time hard (NP hard) problem cannot be solved in polynomial

time (with respect to the size of the instance). The reader interested in complexity of decision problems and combinatorial optimization problems

is referred for example to [10].
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In these works, the authors simplify the problem by solving con�icts iteratively over short moving time windows.

This technique is effective for problems involving air traf�c over a short period of time (e.g. tactical decon�iction)

but cannot be applied in our strategic decon�iction context.

In [23] and [24], preliminary studies on individual 4D trajectory optimization are presented. In these papers,

optimal 4D trajectories for individual �ights were allocated by solving a combinatorial optimization problem using

a non-population based hybrid-metaheuristic optimization method. The numerical results presented in [24] show

that an integration of a simple greedy local search into a classical simulated-annealing method can signi�cantly

decrease the computation time (10 times less computation time than using simulated annealing alone) for small

traf�c instances (� 4,000 �ights). However the discretization of the search domain (possible departure times and

alternative trajectories) induces high combinatorics.

In this paper, we contribute to the area of air traf�c management in the framework of the future ATM paradigm.

More precisely, we propose an alternative, mixed-integer programming formulation of the strategic trajectory plan-

ning problem presented in [24]. Due to the complexity of the problem, we concentrate on a single objective function:

to minimize the total interaction between trajectories. We improve the hybrid-metaheuristic optimization algorithm

proposed in [24] by introducing a new intensi�cation local-search step. Moreover, we describe a computationally

ef�cient hash-table based method, which does not rely on pair-wise comparisons, for detecting interaction between

trajectories. We introduce a preliminary step to take into account uncertainty of the aircraft position in the horizontal

plane. To the best of our knowledge, no other research work considers solving globally con�icts between aircraft

trajectories, taking into account uncertainty, for such a large-scale traf�c. Finally, we prove the viability of the

overall methodology on large-scale air-traf�c data on the European-continent airspace, including the traf�c in the

terminal maneuvering area (TMA).

III. MATHEMATICAL MODELING

This section presents the mathematical model used to describe our strategic trajectory-planning methodology.

First, the assumptions and simpli�cations that are made in this work are presented. Then, uncertainty of aircraft

position is characterized. Next, a de�nition of interaction between trajectories is given. Then, the route/departure-time

allocation techniques adapted for strategic trajectory-planning are described. Finally, a mathematical formulation of

the interaction minimization problem is introduced.

In this work, the following assumptions and simpli�cations are made. The airspace is considered as a Euclidean

space. Latitudes and longitudes on the earth surface are transformed into (x; y) coordinates by a Lambert azimuthal

projection with the center of projection located at the center of the given airspace. The altitude, in feet, will be

represented by the z coordinate. The �ight level and altitude pro�le of the initial discretized 4D trajectory is assumed

to be optimal (for the airliner). A given (initial) trajectory is composed of three parts; the initial en-route segment is

the shortest possible route between the origin and the destination airports (great circle path) and the two (extremity)

TMA parts of the trajectory.

A. Uncertainties of aircraft position

In reality, aircraft are subjected to unpredicted external events (such as wind, external temperature, etc.) which

cause uncertainties on aircraft positions with respect to their planned 4D trajectory. In this preliminary study, we
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Figure 2: Left: Possible aircraft positions in presence of uncertainties. Right: Enlarged protection volume and

uncertainty margin.

consider only uncertainties of aircraft positions in the horizontal plane, assuming that aircraft can attain a given

altitude z with high precision. Consider a given set of N discretized 4D trajectories, where each trajectory i is

a time sequence of 4D coordinates, Pi;k(xi;k; yi;k; zi;k; ti;k), specifying that aircraft must arrive at a given point

(xi;k; yi;k; zi;k) at time ti;k, for k = 1; : : : ;Ki, and Ki is the number of sampling points of trajectory i.

Due to uncertainties, we shall assume that the real (horizontal) position, (xri;k; y
r
i;k), of the aircraft at time ti;k

can be in an area de�ned by a disk of radius R around (xi;k; yi;k), as illustrated in Figure 2. Thus, the possible

locations of the aircraft at time t are the elements of the set:

f(xri;k; y
r
i;k) : (xri;k � xi;k)2 + (yri;k � yi;k)2 � R2g: (1)

To ensure separation of aircraft subjected to such uncertainties, the protection volume has to be enlarged by a

radius of R, as illustrated in Figure 2. Thus, the (robust) minimum separation, Nr
h , in the horizontal plane becomes:

Nr
h = Nh +R; (2)

where Nh is the minimum separation in the case without uncertainty. This enlargement of the protection volume

allows an aircraft to follow its 4D trajectory plan with some margin. It can arrive at a given point with some

deviation while the minimum interaction condition is still satis�ed. This margin will be called the uncertainty

margin in the remaining of this paper.

In order to simplify the presentation, we shall consider in the remaining subsections of the paper the case without

uncertainty (R = 0). However, in the numerical results section, experiments are also conducted for the case with

uncertainty.



7

!"#$%&!'"()!"

!"#$%&!'"()#"

!"#$%&!'"()$"

*"'!%&+',)-'./0%))
1,)!2%)2'"13',!#.)*.#,%)

! i,k = 2

dh < Nh Nh

Pi,kdh < Nh

Figure 3: Interactions, �i;k, at sampling point Pi;k of trajectory i.

B. Interaction between trajectories

Interaction between trajectories is, roughly speaking, a situation which occurs in the planning phase, when

more than one trajectory compete for the same space at the same period of time. It is different from the con�ict

situation, which corresponds simply to a violation of the minimum separation (i.e., 5 NM horizontally and 1,000

ft vertically). Additional separation conditions, such as time separation, topology of trajectory intersection, distance

between trajectories, etc., can also be taken into account in the concept of interaction.

For the sake of simplicity, let us �rst rely on the validation of the minimum separation for the measurement of

interactions. Thus, minimizing interaction between trajectories, in this particular case, boils down to minimizing

the number of con�icts between aircraft.

Consider a point k of trajectory i, interactions at point Pi;k, denoted �i;k, may be de�ned as the total number

of times that the protection volume around point Pi;k is violated. Figure 3 illustrates interaction in the horizontal

plane between N = 3 trajectories measured at point Pi;k.

The interaction associated with trajectory i, denoted �i, is therefore de�ned to be:

�i =
KiX

k=1

�i;k: (3)

Finally, the total interaction between trajectories, �tot, for a whole traf�c situation is simply de�ned as:

�tot =
NX

i=1

�i =
NX

i=1

KiX

k=1

�i;k: (4)

C. Route/departure-time allocation

The objective of this work is to allocate an alternative trajectory and an alternative departure time for each aircraft

in order to minimize the total interaction between trajectories, taking into account uncertainty of aircraft position

in the horizontal plane. This paper focuses on the strategic level (planning one day in advance); the interaction

reduction problem can therefore be solved simultaneously on both the spatial and the temporal dimensions.

The alternative departure time and the alternative route to be allocated to each �ight are modeled as follows.

Alternative departure time. The departure time of each �ight can be shifted by a positive (delay) or a negative

(advance) time shift. Let �i 2 �i be a departure time shift attributed to �ight i, where �i is a set of acceptable
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Figure 4: Initial and alternative trajectories with M = 2 virtual waypoints.

time shifts for �ight i. The departure time ti of �ight i is therefore ti = ti;0 + �i; where ti;0 is the initially-planned

departure time of �ight i.

Alternative trajectory design. To respect the given optimal cruise level, altitude pro�le, and standard departure

and arrival procedures, in this work we concentrate on modifying only the horizontal pro�le of the en-route segment

of a given 4D trajectory.

In this work, an alternative trajectory is constructed by placing a set of virtual waypoints near the initial en-route

segment and then by reconnecting the successive waypoints with straight-line segments.

We call longitudinal axis (x0) the axis that is tangent to the initial en-route segment, and the lateral axis (y0) is

the axis that is perpendicular to the longitudinal axis. The position of each waypoint will be de�ned using these

relative x0y0-reference axes. Let wmi = (wmix0 ; wmiy0) be the mth virtual waypoint of trajectory i, where wmix0 and

wmiy0 are the longitudinal and lateral components of wmi respectively. We de�ne, for each �ight i, a set of virtual

waypoints (optimization variables) used to control the trajectory shape of �ight i, denoted wi can be represented

as wi = fwmi jwmi = (wmix0 ; wmiy0)gMm=1, where M denotes the number of virtual waypoints that the user is allowed

to introduce. In Figure 4, a dashed line illustrates an alternative en-route pro�le constructed with M = 2 virtual

waypoints.

Remark that the alternative trajectory will yield an increase in �ight duration when compared with the initial

trajectory. To compensate this increased �ight duration, the altitude pro�le must be updated to avoid a premature

descent. Let Text be the increased �ight duration. In the case of a regional �ight whose all �ight phases (departure,

climb, cruise, descent, and arrival) are executed in the considered airspace sector, the altitude pro�le is updated by

extending the cruise phase (constant-level) at the top of descent (TOD) for a duration Text, as illustrated in Figure

5.

Besides, for a �ight whose origin or destination airport is outside of the current airspace sector, the cruise phase

can take place inside or outside the current airspace sector. This yields six possible con�gurations of the initial
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Figure 5: Altitude pro�le update: extending cruise phase at the top of descent (TOD).

altitude pro�le, as illustrated in Figure 6. Let zmax be the maximum altitude that the �ight will attain in the current

airspace sector. In this case, the vertical pro�le can be updated by extending the �ight with a constant altitude zmax
for a duration Text according to which of the con�gurations of the initial altitude pro�le is relevant (the aim is to

preserve the given optimal pro�le and the same climb/descent slopes).

D. Mixed-integer programming formulation

We formulate here the strategic trajectory-planning problem as an optimization problem.

Objective. Find departure time shifts and alternative en-route trajectories that reduce the total interaction between

the aircraft trajectories.

Given data. A problem instance is given by:

� A set of initial (nominal) N discretized 4D trajectories;

� The number of allowed virtual waypoints, M ;

� The maximum allowed advance departure time shift of each �ight i, �ia < 0 ;

� The maximum allowed delay departure time shift of each �ight i, �id > 0;

� The maximum allowed route length extension coef�cient of each �ight i, 0 � di � 1;

� The length of the initial en-route segment of each �ight i, Li;0.

Decision variables. To separate trajectories in the time domain, a departure-time shift �i is associated to each

�ight i. In addition, a vector, wi, of virtual waypoint locations, wi = (w1
i ; : : : ; wMi ), is associated to each �ight to

separate trajectories in 3D space. Let us set the compact vector notation w = (w1; : : : ; wN ) and � = (�1; : : : ; �N ).

Therefore, the decision variables of our route/departure-time allocation problem can be represented by (w; �):

Constraints. The above optimization variables must satisfy the following constraints:

Allowed departure time shift. Since it is not reasonable to delay or advance departure time of �ight for too

long, the departure time shift �i will be limited to lie in the interval �i := [�ia; �id]. Common practice in airports
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Figure 6: Six possible con�gurations of the initial altitude pro�le of �ight, whose origin or destination airports are

outside of the current airspace sector, and the ways to update them.

conducted us to rely on a discretization of this time interval. Given a time-shift step size �s (to be set by the user),

this yields nia := ��i
a

�s
possible advance slots and nid := �i

d
�s

possible delay slots of �ight i. Therefore, the set, �i,

of all possible departure time shifts of �ight i is given by

�i = f�nia�s;�(nia � 1)�s; : : : ;��s; 0; �s; : : : ; (nid � 1)�s; nid�sg: (5)

Maximal route length extension. The alternative trajectory induces route length extension which causes an

increase of fuel consumption. Therefore, it should be limited so that it is acceptable for the airline. Let di be the

maximum allowed route length extension coef�cient of �ight i (to be set by the user). To restrain the route length

extension, the alternative en-route pro�le of �ight i must satisfy:

Li(wi) � (1 + di)Li;0; (6)

where Li(wi) is the length of the alternative en-route pro�le determined by wi. This constraint can be satis�ed by

restricting the set of possible waypoint locations (as will be described below).

Allowed waypoint locations. To limit the search space, to prevent undesirable sharp turns, and to restrain the

route length extension, we bound the possible location of each virtual waypoint. For simplicity, for each trajectory

i and each virtual waypoint m, the lateral component, wmiy0 , is restricted to lie in the interval:

Wm
iy0 := [�aiLi;0; aiLi;0]: (7)
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Figure 7: Rectangular-shape possible location of M = 2 virtual waypoints.

Similarly, the longitudinal component, wmix0 , is set to be in a range:

Wm
ix0 :=

��
m

1 +M
� bi

�
Li;0;

�
m

1 +M
+ bi

�
Li;0

�
; (8)

where 0 � ai � 1 and 0 � bi � 1 are user-de�ned coef�cients that satisfy (6). This yields a rectangular shape

for the possible locations of the virtual waypoint wmi , as illustrated in Figure 7. To obtain a regular trajectory, the

longitudinal component of two adjacent waypoints must not overlap, i.e.,
�

m
1 +M

+ bi
�
<
�
m+ 1
1 +M

� bi
�

and hence the user should choose bi so that bi < 1
2(M+1) : Finally, to restrain the maximum route extension, ai and

bi must be chosen so that:

maxfLi(wi)jwi 2Wix0 �Wiy0g � (1 + di)Li;0: (9)

Objective function. One wishes to determine the values for the optimization variables wi and �i for each �ight

i = 1; : : : ; N so as to minimize interaction between N �ights: �tot(w; �). The problem can be represented as

follows:
min
w;�

�(w; �)

subject to

�i 2 �i; for all i = 1; : : : ; N;

wmix0 2W
m
ix0 ; for all i = 1; : : : ; N;m = 1; : : : ;M;

wmiy0 2W
m
iy0 ; for all i = 1; : : : ; N;m = 1; : : : ;M;

(P1)

where �(w; �) is de�ned by (4), and �i, Wm
iy0 , and Wm

ix0 are de�ned by (5), (7), and (8) respectively. The

complexity of the problem (P1) is discussed in [24]. The mathematical model (P1) involves mixed-integer variables

introducing high combinatorics to the search space. Since we have Wm
ix0 and Wm

iy0 � R2, we have w 2 R2NM .
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Figure 8: Four-dimension (3D space + time) grid for con�ict detection, illustrated as a time series of 3D grids

which is sampled with discretization time step �t = tn� tn�1. The size of each cell in the 3D grids is de�ned by

the minimum separation requirements (Nh and Nv).

The discrete variable feasible set has cardinality j�ij =
j�i

aj+j�
i
dj

�s
+ 1, where �ia is the maximum allowed advance

time shift, �id is the maximum allowed delay time shift, and �s is the time-shift step size. The objective function

of problem (P1) is non-separable, because each term �i;k does not depend solely on variables wi and �i; it is

also affected by neighboring trajectories. The evaluation of the objective function involves a heavy computational

burden in practice, as will be seen in the sequel of the paper, where we consider the continental scale. Besides, the

objective function may feature several equivalent optima (multimodal). This interaction minimization problem based

on route/departure-time assignment technique is therefore suf�ciently dif�cult to motivate recourse to a stochastic

methods for optimization.

IV. INTERACTION DETECTION METHOD

In order to evaluate the objective function, at a candidate solution, (w; �), one needs to compute interaction

between the N aircraft trajectories. We present here a method to detect any violation of the protection volume. To

avoid the N(N�1)
2 time-consuming pair-wise comparisons, which are prohibitive in our continental-scale application

context, we propose a grid-based interaction detection scheme which is implemented in a so-called hash table as

presented in [24].

First, the airspace is discretized using a four-dimensional grid (3D space + time), as illustrated in Figure 8. The

size of each cell in the 4D grid is de�ned by the minimum separation requirement and the discretization time step,

�t (see below). Then, for each given 4D coordinate Pi;k(xi;k; yi;k; zi;k; ti;k) of each trajectory i, we identify which

cell, says Ci;j;k;t, of the 4D grid contains Pi;k(xi;k; yi;k; zi;k; ti;k).

Next, we consider each such cell Ci;j;k;t and we successively check its surrounding cells (there are 33 = 27 such

neighboring cells, including cell Ci;j;k;t itself). If one cell is occupied by an aircraft other than aircraft i itself, the

horizontal distance (dh) and the vertical distance (dv) between the corresponding aircraft coordinates are measured.

A violation of the protection volume is identi�ed when both dh < Nh and dv < Nv .

An example of con�ict detection in the horizontal plane can be seen in Figure 9, where the nine neighboring

cells of a given trajectory sampled point are checked, and the distance between the given sampled point and the
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Figure 9: Con�ict detection in the horizontal plane: Verifying the nine neighboring cells for separation requirements.

neighbor-cell sampled point (corresponding to another trajectory) are measured. Since the violation of the protection

volume can only occur when the points in question are in the same or in adjacent grid cells, the number of points

to check is signi�cantly smaller than in a pair-wise comparison method.

In order not to underestimate interaction, trajectories must be discretized with a suf�ciently small sampling-

time step, �t, which depends on the maximum possible aircraft horizontal and vertical speeds. As stated in [15],

the worst-case scenario for interaction detection in the horizontal plane occurs when two aircraft follow parallel

trajectories that are separated by a distance, D, less than or equal to the horizontal separation norm, Nh, at maximum

horizontal speed, Vhmax , with heading in opposite directions. Hence, in the horizontal plane, undetected interaction

can occur when: �t > Nh
Vmax

cos
�

arcsin
�
D
Nh

��
: In the vertical plane, the worst-case scenario occurs when one

aircraft is climbing at a maximum rate of climb, RoCmax, and another is descending at maximum rate of descent,

RoDmax. Thus, in the vertical plane, in an analogical way as what was done in [15], undetected interaction can

occur when: �t > Nv
(RoCmax+RoDmax) :

One can therefore simply choose a suf�ciently small value of �t. However, using a small sampling-time step leads

to a large number of trajectory samples, which therefore requires more computation time and memory. Instead, we

propose an inner-loop algorithm, called interp, detecting interaction between two sampling times, t and t+ �t,

by interpolating aircraft positions with a suf�ciently small step size, tinterp. Then, one checks each pair of these

interpolated points. The algorithm stops when an interaction is identi�ed or when every pair of the interpolated

points has been checked. The inner-loop interpolation algorithm, interp, is described in Figure 10.

V. HYBRID-METAHEURISTIC OPTIMIZATION ALGORITHM

The strategic trajectory planning methodology we are presenting relies on the interaction minimization prob-

lem introduced in Section III whose objective function values are obtained by black-box simulation through the

interaction detection scheme developed in Section IV. In this work, we present a hybrid metaheuristic approach
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Algorithm Interp
Require: Pi;k , Pi;k +1 , Pj;l , Pj;l +1

1: Discretize, using time stept interp , the trajectory segments [Pi;k ; Pi;k +1 ] and [Pj;l ; Pj;l +1 ] as f P� gK
� =1

and f Q� gK
� =1 respectively;

2: Set isInteract = False;
3: for k = 0 ! K do . for each pair of interpolated points
4: Measure distance,dh and dv , betweenPk and Qk ;
5: if dh < N r

h and dv < N v then
6: isInteract = True;
7: Return isInteract;
8: End;
9: end if

10: end for
11: Return isInteract;
12: End;

1

Figure 10: Inner-loop interpolation algorithm for detecting interactions between two sampling time steps, by

interpolating aircraft positions with a small time step size, tinterp.
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Hill-climbing 
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current  
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true 
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Figure 11: Structure of the proposed hybrid algorithm of simulated annealing and hill-climbing local search methods.

adapted to handle an air-traf�c assignment problem at the continent scale involving more than 30,000 trajectories,

each of which is described by around 500 sample points. It relies on a classical simulated annealing algorithm and

two different hill-climbing local-search modules. The local search allows the system to intensify the search around

a potential candidate solution while the simulated annealing allows the system to escape from a local trap and

thereby ensuring the exploration of the solution space. The proposed hybrid algorithm combines the SA and the

local search algorithm such that the local search is considered as an inner-loop of the SA, which will be performed

when a pre-de�ned condition is satis�ed. The structure of the proposed hybrid algorithm of simulated annealing

and hill-climbing local search methods is illustrated in Figure 11.

Simulated annealing was introduced by S. Kirkpatrick et al. in 1982 [25]. It is a metaheuristic stochastic method

of optimization that is well known for its ability to escape from local minima by allowing occasional moves that

deteriorate the value of the objective function, such deteriorating moves being less and less as the number of

iterations grows. This algorithm is inspired by an annealing process in metallurgy where material at high-energy

state is slowly cooled down according to a pre-described temperature reduction schedule until the material reaches

a global-minimum energy state and forms a crystallized solid. Too rapid decrease of the temperature can, however,

yield a non-desirable local minimal energy state. In the simulated annealing optimization algorithm, the objective
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Algorithm Neighborhood function
Require: Pw , i .

1: Generate random number,r := random(0,1);
2: if r < P w then
3: Choose new� i from � i ;
4: else
5: Choose one virtual waypointwm

i to be modi�ed.
6: Choose newwm

ix 0 from W m
ix 0;

7: Choose newwm
iy 0 from W m

iy 0;
8: end if

1

Figure 12: Neighborhood function.

function value is analogical to the energy of the physical problem while a control parameter, T , that decreases as

the number of iteration grows, plays the role of the temperature schedule.

For our problem, the simulated annealing proceeds as follows. First, we evaluate the objective function at the

current con�guration (w; �)C . It is denoted �C . Then a neighboring solution, (w; �)N , is generated by randomly

choosing one �ight to be modi�ed. Then, a new solution for this chosen �ight is generated according to a pre-de�ned

neighborhood structure (to be described below). If the neighborhood solution improves the objective function value,

then it is accepted. Otherwise, it is accepted with a probability e
���

T , where �� = �N � �C is the difference

of energy between current state C and new state N (Metropolis algorithm)5. When the maximum number of

iterations, nT , at a given temperature is reached, the temperature is decreased according to the user-provided pre-

de�ned schedule, and the process is repeated until the pre-de�ned �nal temperature, Tfinal, is reached. More detail

on simulated annealing can be found, for instance, in [27], [28].

Neighborhood structure. The hybrid algorithm we are proposing relies on a neighborhood structure to determine

the next move. In order to generate a neighborhood solution for a given �ight, i, from the current con�guration

(wi; �i)C , one has to determine whether to modify the location of waypoints or to modify the departure time in

the next move. In general, searching for the solution in the time domain would be more preferable since it does

not induce extra fuel consumption. However, empirical tests show that limiting the search to only that degree of

freedom results in prohibitive computational time. Therefore, we introduce a user-de�ned parameter Pw to control

the probability to modify the location of the waypoints wi and such that the probability to modify rather the

departure time is 1� Pw. For a given �ight i, the neighborhood operator generates a new set of virtual waypoints

or a new alternative departure time according to this probability Pw. The in�uence of the value of this parameter

Pw is investigated and discussed in Section VI.

Hill-climbing local search modules. The local search modules we use are heuristic methods that accepts a new

solution only if it yields a decrease of the objective function. The process repeats until no further improvement can

5Metropolis algorithm is a Markov Chain Monte Carlo (MCMC) method that generates a sequence of random samples according to a

pre-de�ned probability distribution [26].
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be found or until the maximum number of iterations nTLOC is reached. The two local-search modules correspond

to the two following strategies:

� Intensi�cation of the search on one Particular Trajectory (PT). Given a �ight i, this state-exploitation

step focuses on improving the current solution by applying a local change from the neighborhood structure

only to �ight i (only the decision variables (wi; �i) are affected).

� Intensi�cation of the search on the Interacting Trajectories (IT). Given a �ight i, this state-exploitation

step applies a local change, from the neighborhood structure, to every �ight that is currently interacting

with �ight i. For instance, suppose that trajectory i interacts with trajectory p; q, and r. The changes are

sequentially applied to the decision variables (wp; �p), (wq; �q), and (wr; �r).

Hybrid algorithm (simulated annealing and hill-climbing). Here is how the above-mentioned methods are

combined. The methods are carried out according to pre-de�ned probabilities, which are proportional to the control

temperature, T . The probability to carry out simulated annealing step, PSA, is:

PSA(T ) = PSA;min + (PSA;max � PSA;min) �
T0 � T
T0

; (10)

where PSA;max and PSA;min are the maximum and minimum probabilities to perform the SA (pre-de�ned by the

user). The probability of running a hill-climbing local search module, PLoc, is given by:

PLoc(T ) = PLoc;min + (PLoc;max � PLoc;min) �
T0 � T
T0

; (11)

where PLoc;max and PLoc;min are the maximum and minimum probabilities to perform the local search (de�ned

analogously). And, �nally the probability of carrying out both SA and the local search (successively), PSL, is:

PSL(T ) = 1� (PSA(T ) + PLoc(T )): (12)

A key factor in tuning this hybrid algorithm is to reach a good trade off between exploration (diversi�cation)

and exploitation (intensi�cation) of the solution space, i.e. a compromise between �ne convergence towards local

minima and the computation time invested in exploring the whole search space.

The proposed hybrid algorithm is detailed in Figure 13 where Tinit and Tfinal are respectively the initial and

the �nal temperature of the (user-provided) cooling schedule, and nT is the maximal number of iterations at each

temperature step (set by the user).

VI. NUMERICAL RESULTS

The proposed hybrid-metaheuristic algorithm is implemented in Java and simulated on an AMD Opteron 2 GHz

processor with 128 GB RAM. The problem instance we must solve is given by a data set consisting of a simulated

full day air-traf�c over the European airspace on July 1st, 2011, involving N = 30,695 trajectories. The trajectory

set is simulated using Base of Aircraft Data (BADA) aircraft performance model with optimal altitude pro�les [29].

The proposed algorithm is �rst conducted without consideration of uncertainty (R = 0). It is tested with the traf�c

data corresponding only to the en-route segments. Then, it is tested with the full traf�c, taking also into account

air-traf�c in the terminal maneuvering area (TMA). Finally, computational experiments are conducted with the full

traf�c, taken into account uncertainty of aircraft position in the horizontal plane.
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Figure 13: Hybrid algorithm of simulated annealing and hill-climbing local search methods.

The following values were chosen for the user-de�ned parameter: M = 2, bi = 0:1. The maximum route

extension can occur when w1
i = (( 1

3 + bi)Li;0; aiLi;0) and w2
i = (( 1

3 � bi)Li;0; �aiLi;0), and therefore ai can be

straightforwardly deduced from:

(1 + di) = 2

s�
1
3
� bi

�2

+ (ai)
2 +

s�
1
3

+ bi
�2

+ (2ai)2;

which yields ai = 0:125. Empirical tests lead us to set PSA;min = 0:8, PSA;max = 0:9, PLoc;min = 0:4, PLoc;max =

0:6, nT = 3,500 and nTLoc = 5. The initial temperature, Tinit, is calculated using an algorithm proposed in [27].

It is computed by initiating 100 deteriorate disturbances at random; evaluate the average variations (��avg) of

the objective function value; then deduce Tinit from the relation: e
���avg

Tinit = �0, where �0 is the initial rate of

accepting degrading solutions whose value depends on the assumed quality of the initial con�guration. Empirical

test leads us to set �0 = 0:3. The temperature is decreased according to a geometrical law Tk+1 = 0:99Tk. The

�nal temperature is set to Tfinal = Tinit
1;000 , yielding 688 temperature steps.
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Figure 14: Filtered trajectory set with �t = 20 seconds. Figure 15: Interaction points of the initial traf�c situation.

A. En-route segment traf�c

Here, the trajectory set is �ltered so that only the en-route segments that lie in the European airspace (latitude

interval [30.0, 65.0], and longitude interval [-15.0, 40.0]) are considered. The �ltered trajectory set consists of 29,843

trajectories. These trajectories are sampled in time using �t = 20 seconds. Figure 14 shows the sampling points

of the initial trajectory set.

The inner-loop interpolation time step, tinterp, is set to 5 seconds. The initial trajectory plan features �tot;init
= 178,168 interactions which involve 19,447 trajectories. Figure 15 shows the locations where these interactions

occur. In order to carry out the simulation, the user-de�ned input parameters of the optimization algorithm are

empirically tuned and set as follows (in coherence with air-traf�c controllers’ experience) for every trajectory i.

The maximum allowed departure time shifts are set to ��ia = �id = 90 minutes. The maximum allowed route length

extension coef�cient, di, is set to 12 %.

First, the in�uences of modifying the trajectory shape (location of virtual waypoints) and the departure time on

the resolution of the interaction reduction problem are studied. Simulations with different settings of probability,

Pw, to modify the location of virtual waypoints (rather than modifying the departure time) are performed. In

each such simulation, we keep the feasible area of the solution space (feasible virtual waypoint location and

feasible departure time shift) identical. Each simulation is carried out 10 times. The �nal total interactions between

trajectories �tot;final are compared in Table I. The average number of iterations and the average computation time

are compared in Figure 16. The average number of modi�ed routes, and the average number of modi�ed departure

times are compared in Figure 17.

The results show that relying on only one degree of freedom (Pw = 0:0 and Pw = 1:0) is not suf�cient to

separate all trajectories. Moreover, it requires a large number of objective function evaluations which results in long

computation time. Acting only in the temporal space (Pw = 0:0) is nevertheless more powerful than acting only

in the 3D space (Pw = 1:0), yielding better solutions in signi�cantly less number of objective function evaluations
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Table I: Impact of the chosen value of probability, Pw, on the �nal total interaction between trajectories �tot;final.

Pw 0.0 0.25 0.50 0.75 1.00

�tot;final 32 0 0 0 1984

Figure 16: Impact of the chosen value of probability Pw on the average number of iterations (left) and on the

average computation time (right).

(and therefore less computation time). However, relying solely on modifying departure time shifts is not suf�cient

to reach an interaction-free solution (�tot;final = 0). Introducing a trade-off probability, Pw, to modify both the

trajectory shape and the departure time (Pw = 0:25; 0:5 and 0.75) yields an interaction-free (or con�ict-free in

this particular case) trajectory plan within approximately 30 minutes of computation time. The number of modi�ed

trajectories in 3D space and in the temporal space depends on the chosen value for Pw.

The impact of the number of allowed virtual waypoints, M , on the computation time is also investigated. We

conducted experiments with M = 3 virtual waypoints, using the value Pw = 0.5. The simulations were performed

10 times. Interaction-free solutions were found within an average of 43.17 minutes. Despite the increase of the

richness of the solution space, using more virtual waypoints induces a higher combinatorics for the search space,

thereby yielding larger computation time. Moreover, the resulting trajectories involve undesirable zig-zags.

Then, the impact of the particular local-search strategies (PT or IT) on the convergence of the hybrid-metaheuristic

algorithm is investigated. The simulation was performed 10 times with probability Pw =0.5. The average computation

time using a single intensi�cation method (PT or IT), and using both methods sequentially (PT + IT) are shown in

Table II. The evolutions of the value of objective function �tot at the end of each temperature step are compared

in Figure 18.

All local search methods (PT, IT, PT + IT) yield interaction-free solutions (�tot;final =0) within the given

maximum number of iterations (nT � 688). Numerical results show that intensifying the search of solutions on
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Figure 17: Impact of the chosen value of probability Pw on the number of modi�ed routes and on the number of

departure-time shifts.

Table II: Comparing the different intensi�cation methods (all yielding to zero interaction).

Intensi�cation method Average computation time (minutes)

PT 55.15

IT 52.93

PT + IT 29.47

each individual trajectory followed by intensifying the search on its interacting neighbors (PT + IT) converges

signi�cantly faster than performing each intensi�cation method alone.

B. Traf�c with TMA

Since it is not possible to modify the shape of the trajectories in the TMA, the TMA-traf�c is much more

constrained than the en-route traf�c. Indeed, the interactions occurring in en-route airspace can be separated in

space and in time, while the interactions occurring in the TMA can only be separated by acting in the time domain.

In order to take into account the trajectory segments that belong to the TMA, we �rst set the size of the minimum

separation NhT MA to 3 NM. The trajectory set consists of N = 30; 695 trajectories which yields �tot;initial =

235,632 initial interactions.

The input parameters of the optimization algorithm are, here again, empirically set. Two different values for the

maximum departure time shift (��ia, �id) and for the maximum route length extension (di) are used, and their values

are given in Table III. The simulation is carried out 10 times for each of the three cases in Table III. Again, the

proposed algorithm is able to �nd interaction-free solutions (�tot;final = 0) for the given traf�c situation involving

the high-density traf�c occurring in the TMA. The computation time and the number of modi�ed trajectories relevant

to each case of the optimization constraints are compared in Figure 19.
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Figure 18: Evolution of the objective function value using the different local search strategies (right: close-up plot

near the lowest objective function values).

Table III: Values of the maximum route length extension (di) and the maximum departure time shift (��ia, �id) used

for computational experiments on air traf�c with TMA.

Case di ��i
a, �i

d (minutes)

1 0.12 60

2 0.25 60

3 0.25 120

Remark that the initial interaction when taking into account the air-traf�c in the TMA is signi�cantly higher than

when considering only en-route traf�c. This is due to the high density of the traf�c in the TMA. In addition, our

interaction-detection method cannot distinguish aircraft using parallel runways from actual interaction. This leads

to some false-positive contributions to the interactions. This larger problem instance is more dif�cult to solve, and

requires longer computation time to converge to interaction-free solutions. Moreover, the algorithm has to modify

more trajectories in order to solve all the interactions.

One observes that the computation time required to obtain the interaction-free solution depends on the size of

the solution space. As expected, with the same setting di = 0.12 and maximum time shift, ��ia = �id = 60 minutes

(case 1), the algorithm requires signi�cantly more computation time for solving the scenario with TMA traf�c than

to solve the scenario involving only en-route traf�c. However, the required computation time decreases signi�cantly

when the solution space is relaxed (i.e., when more candidate solutions are considered; case 2 and case 3).

C. Taking into account uncertainty

In this subsection, we consider the uncertainty of aircraft position in the horizontal plane. Simulations were

performed on both the en-route traf�c scenario, and on the traf�c scenario involving the TMA. The uncertainty

margin in en-route is set to Renroute = 3 NM. The uncertainty margin in the TMA is not taken into account
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Figure 19: Left: Impact of the size of the solution space on the computation time. Right: Impact of the size of the

solution space on the number of modi�ed routes and the number of modi�ed departure times.

(RTMA = 0), since during this phase of �ight, aircraft are usually required to follow a given path with very

high precision. The user-de�ned input parameters of the optimization algorithm are empirically set as follows. The

maximum departure time shift is ��ia, �id = 120 minutes, and the maximum route length extension di is 0.25.

The number of waypoints, M , and the coef�cients ai and bi are set as in the previous subsection. The initial

total interaction �tot;init of both traf�c scenarios with and without consideration of uncertainty are compared in

Figure 20 (left). The simulation was carried out 10 times. The proposed algorithm is able to separate all trajectories

(�tot;final = 0) for both traf�c scenarios, taking into account uncertainties of aircraft positions in the horizontal

plane. The computation times to reach the interaction-free solutions for both traf�c scenarios with and without

consideration of uncertainty are compared in Figure 20 (right).

The required computation time is signi�cantly longer when the uncertainty is considered. It is, however, still

viable for a strategic planning phase. This can be improved by introducing more degrees of freedom to the solution

space, e.g., alternative �ight levels, or speed regulation in the TMA.

VII. CONCLUSIONS

We introduced an ef�cient methodology to address strategic planning of aircraft trajectories in the framework

of future trajectory-based ATM operation involving large scale traf�c such as that at the European-continent scale.

The aim of the proposed method is to minimize interaction between trajectories, so as to minimize the air-traf�c

controller’s workload. The proposed method relies on a route/departure-time allocation technique to modify the

initial trajectory plan. The problem was modeled mathematically under the form of an optimization problem aiming

at minimizing interaction between trajectories.

In order to measure the interaction between trajectories, we developed a grid-based interaction-detection method.

To reduce the number of sampling points needed while minimizing further the computation time, this interaction-

detection method interpolates the aircraft position between two suspected sampling points instead of re�ning the
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Figure 20: Left: Initial interaction between trajectories with and without consideration of uncertainty. Right:

Comparison of computation time with and without consideration of uncertainty.

sampling-time step.

To �nd an optimal route and a departure time for each �ight, we rely on a hybrid-metaheuristic optimization

algorithm that combines the advantages of simulated annealing and of hill-climbing local search methods. The

simulated annealing ensures diversity of the candidate solutions considered, while the local-search methods intensify

the search in promising regions of the feasible domain in order to accelerate convergence.

The proposed algorithm was �rst tested with en-route air-traf�c data over the European airspace. Two different

local search strategies were investigated and compared. The �rst strategy concentrates on improving the current

solution by modifying one single trajectory at a time. The second strategy aims at improving solutions by modifying

all neighboring �ights interacting with a given �ight. Numerical results show that it is more ef�cient to employ

both strategies sequentially to converge to interaction-free solutions, since it requires � 40% less computation time

than using each strategy separately.

The impact of the number of virtual waypoints on the resolution time was studied. Despite the increasing of

the richness of the solution space, using more virtual waypoints induces more combinatorics to the search space

leading to a longer computation time. Moreover, the resulting trajectories involve undesirable zig-zags.

The impact of augmenting the number of degrees of freedom in the search space on the quality of the results

obtained by our methodology was also studied and discussed. Numerical results show that using departure-time shifts

alone is not suf�cient to yield zero-interaction solutions. Similarly, modifying only the shape of trajectory alone is

not suf�cient either. In addition, the latter strategy requires prohibitive computation time. When the modi�cations

of both the departure times and the shape of trajectory are allowed, the richness of the solution space increases.

Therefore an optimal (interaction-free) solution can be obtained within signi�cantly less computation time.

The proposed algorithm was then tested with the same large-scale European airspace air-traf�c data, but this

time taken also into account the air traf�c occurring in the terminal control area (TMA). This later traf�c scenario

involves more number of aircraft trajectories and more initial interactions, which make it more dif�cult to solve all

the interactions. Therefore, the algorithm requires longer computation time to separate all the trajectories. Again,
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the proposed methodology proved its ability to �nd an interaction-free trajectory plan within computational time

which is viable for strategic planning.

The effects of the optimization constraints (maximum departure time shifts and maximum route length extension)

were also studied. As expected, when relaxing such constraints, the problem can be solved within less computation

time.

Finally, uncertainties of aircraft position in the horizontal plane were taken into account. Instead of considering

the aircraft position at a given time as a �xed 3D point, in this preliminary study, the aircraft position was modeled

as a bounded circular area of radius R. Numerical results show that the proposed algorithm is again able to �nd

an interaction-free trajectory plan for this more demanding optimization problem.

In further research, instead of being content with interaction-free solutions, we shall concentrate on reducing the

cost associated to the modi�cations of the initial trajectory plan, thereby reducing the number of departure time

shifts and/or the total trajectory length extension. In addition, we aim at increasing further the number of degree of

freedom in the search space: we plan to allow, as new decision variables in our model, speed changes in the TMA,

and to introduce alternative vertical pro�les. Finally, to increase the robustness of the solutions obtained, we intend

to extend the de�nition of interaction to the temporal space: in addition to minimizing interaction, the strategic

trajectory plan will thereby also ensure separation of the trajectories in the temporal space during a suf�ciently-long

interval of time.
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