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ABSTRACT 

 

Evil Waveform (EWF) are signal distortions that can create 

persistent errors (bias) on the pseudo-range measurement 

of several meters. They are of particular interest for 

differential GPS users and for safety critical users. For 

instance, differential corrections do not remove this bias if 

the reference receiver and the rover receiver use different 

receiver parameters (notably RF input bandwidth and 

correlator spacing). 

In order to protect Civil Aviation users from this kind of 

errors, the ICAO has standardized a model for this failure, 

which can then be monitored by high-integrity systems 

such as SBAS and GBAS. In parallel to the standardization 

of the model, a family of Signal Quality Monitoring (SQM) 

techniques has been established for GPS L1 signal. 

With the appearance of the new GPS L5 signal, Civil 

Aviation users will be allowed to benefit from increased 

positioning performances. However, it is necessary to 

extend the signal deformation models and detection 

metrics to this new signal. 

This study uses data collected from modern receivers to 

evaluate the performances of SQM techniques on L1 C/A 

and L5 pilot signals. The methodology for establishing the 

detection thresholds is detailed and applied to 4 different 

datasets. The results show that the legacy SQM techniques 

does not reach the required performances when using 

modern receivers, which have larger pre-correlation 

bandwidth. For L5 users, an adaptation of the SQM 

techniques provides compliant results. 

The study also discusses the performances experienced by 

different types of users (from unmonitored independent 

users to differentially-corrected, protected users) and the 

dependency of the monitoring performances with regard to 

the receiver parameters. 



Finally, the paper also discusses the use of a statistical 

description of collected measurements, which may not 

provide enough information to correctly model the metrics 

distribution. 

 

INTRODUCTION  

 

Evil Waveforms are signal distortions that are attributed to 

a payload anomaly. They can create persistent errors (bias) 

on the pseudo-range measurement of several meters, 

without the receiver loosing lock. They are a particularly 

dangerous threat for differential GPS users, because 

differential corrections do not remove this bias if the 

reference receiver and the rover receiver use different 

receiver parameters (notably RF pre-correlation bandwidth 

and correlator spacing). 

The first occurrence of Evil Waveform occurred in 1993 

on SVN19, with a differentially corrected vertical error up 

to 8 m when SVN19 was taken into account for the position 

computation, compared to a position when it was excluded 

[1]. The origin of the error was shown to be at the signal 

generation unit, onboard the satellite payload. 

In order to protect Civil Aviation users from this kind of 

errors, the ICAO has standardized a model for this failure 

[2], which can then be monitored by high-integrity systems 

such as SBAS and GBAS.  

A family of monitoring techniques has been developed and 

implemented in these systems in order to comply with the 

ICAO requirements. These techniques, named Signal 

Quality Monitoring (SQM), are based on the observation 

of the correlation function of the received signal to check 

if unexpected deformations are present. A founding work 

for this category of monitoring technique is described in 

[3]. 

However, the ICAO model is only defined for the GPS L1 

C/A and GLONASS L1 signals, and SQM has only been 

standardized for GPS L1 C/A signals. With the 

introduction of a new signal for Civil Aviation users, it is 

relevant to study if the existing SQM techniques are 

efficient to monitor GPS L5 pilot signal. Also, modern 

receivers have different characteristics for processing GPS 

L1 C/A signals than receivers used during the initial 

definition of SQM techniques, notably a larger pre-

correlation bandwidth. This difference may impact the 

SQM performances. 

The aim of this paper is to assess the performances of SQM 

technique on L5 and modernized GPS L1 C/A receivers. 

 

The paper has the following structure. First, the ICAO 

EWF Threat Model will be adapted to the GPS L5 signal. 

Secondly, the existing Signal Quality Monitors will be 

adapted to the GPS L5 signal case. The process to 

determine the detection threshold will be described and 

applied to GPS L5 and GPS L1 C/A signals collected with 

modern receivers. In a third part, the SQM performances 

will be studied for different types of users. In a fourth part, 

the SQM performances will be studied in different region 

of the User Design Space, corresponding to different 

receiver parameters. A fifth part will come back on some 

relevant lessons learned in this study through the use of a 

limited description of collected data based on correlator 

output statistics rather than complete time series. 

 

THREAT MODEL ADAPTATION TO GPS L5 

SIGNALS 

 

Existing ICAO TM for GPS L1 C/A signals 

 

ICAO [2] identifies 3 types of effects on the correlation 

function of GNSS signals created by an Evil Waveform 

that can lead to misleading information: 

 Dead zones, ie zones where the correlation function is 

flattened, 

 False peaks, ie multiple zones toward which the 

tracking process can lock, 

 Distortions, ie deformation around the correlation 

peak, which creates a bias on the range estimate. 

The ICAO threat model has 3 parts, noted as TM-A, TM-

B and TM-C, that can create the 3 correlation peak 

pathologies listed above. 

Threat Model A consists of the normal C/A code signal 

except that all the positive chips have a falling edge that 

leads or lags relative to the correct end-time for that chip. 

TM A is defined by a single parameter Δ, corresponding to 

the lead (Δ < 0) or lag (Δ > 0) expressed in fractions of a 

chip. TM-A results in an offset of the correlation function 

and a flattening of the correlation peak. 

Threat Model B consists of a second order filter applied to 

the normal C/A code signal. Threat Model B can be 

modeled by a second order linear system dominated by a 

pair of complex conjugate poles, located at 𝜎 ± 𝑗2𝜋𝑓𝑑, 

where 𝜎 is the damping factor in nepers/second and 𝑓𝑑 is 

the resonant frequency in Hz. The unit step response of the 

second order system is given by  
𝑒(𝑡)

= {
0   for 𝑡 ≤ 0

1 − 𝑒−𝜎𝑡 [cos(2𝜋𝑓𝑑𝑡) +
𝜎

2𝜋𝑓𝑑
sin(2𝜋𝑓𝑑𝑡)]   for 𝑡 ≥ 0 

Threat Model B results in oscillations around the slope 

changes of the autocorrelation function, in an asymmetric 

way. 

Threat Model C is a combination of both previously 

described Threat Models 

 

The range of parameter values for each TM is given in  

Table 1. 

 

 

 
Figure 1 – Correlation functions distorted by EWF 
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Adaptation of ICAO TM for GPS L5 signals 

 

The GPS L5 signal is a new signal aiming at providing civil 

aviation users with a second signal, in addition to GPS L1 

C/A. This second signal will provide to be more robust to 

interferences, and will permit to use dual frequency 

techniques to have an increased redundancy and also 

eliminate the first order term of the ionospheric delay, thus 

decreasing the budget error of the estimated pseudo-ranges 

and consequently increasing the accuracy of the position. 

The GPS L5 signal is broadcast by the Block IIF satellites 

(first launch in 2010, 6 operational satellites in mid-2014), 

with an early demonstration in 2009 on a Block IIRM 

satellite (SVN 49). The signal is fully described in the 

public Interface Control Document [4]. 

 

The main differences of the GPS L5 and the GPS L1 C/A 

signals are: 

1. An increased code rate: 10.23 MHz for GPS L5 

compared 1.023 MHz for GPS L1 C/A. 

2. A different carrier frequency: 1176.45 MHz for L5 

compared to 1575.42 MHz for GPS L1. 

3. The presence of pilot and data components 

transmitted in quadrature. 

4. The L5 signal is defined in a bandwidth of 24 MHz 

around the carrier frequency, while the L1/CA signal 

is defined in a band of 20.46 MHz around the carrier 

frequency. 

In this analysis, we assume that the adapted threat model 

will not be impacted by the different carrier frequency and 

by the presence of a signal in the quadrature channel. More 

particularly, it is assumed that the pseudo-range 

measurements are provided by the pilot channel, and that 

only the pilot channel requires an EWF threat model. 

 

It can be assumed that the signal generation unit onboard 

GPS satellites has a similar architecture for GPS L1 C/A 

and GPS L5 signals. Indeed, the modulation of the signal 

is the same except for the code rate. This assumption is 

confirmed in [5]. When observing the nominal 

deformations of the signal, they are very similar on L1 and 

L5 signals. We can therefore suppose from these 

observations that the same type and generation of 

components are used for the signal generation, and deduce 

that the failure mode, and hence the threat model, can be 

similar. Therefore, the 3 types of Threat Models (A,B,C) 

are kept for GPS L5. Only the ranges of parameters are to 

be adapted. 

To update the range of parameters for the L5 threat models, 

it is useful to look at the justification of the L1 C/A threat 

models given in [3]. 

The range for Δ is justified by the fact that lead or lags 

larger than 12% of the chip lengths would be easily 

detectable by multi-correlator techniques. Assuming that 

the same order of magnitude affects the L5 signal 

generation failure, this would relate to a chip length of 

120% on L5. In order to be realistic with the tracking of 

GNSS signal, the lead or lag of a TM-A should be restricted 

to a value below the chip length. In addition, due to 

expected monitoring performance, a factor 1/2 has been 

applied to value for the L1 C/A model: it is expected that 

EWF with Δ over 60% of L5 chip will be easily detectable. 

For the parameter 𝑓𝑑, the lower value for its range on L1 (4 

MHz) is justified by the presence of specific monitors that 

would protect the military signal L1 P(Y). Since no such 

“military monitoring” is present on L5, it is proposed to 

extend the lower range of this parameter to 1 MHz. 

For the upper range of 𝑓𝑑, the main limiting factor is the 

signal generator’s output filter bandwidth. For L5 signals, 
the output filter bandwidth is 24 MHz, instead of 20 MHz 

for L1 C/A signals. Therefore, higher frequency 

oscillations may be let out by the satellite payload, which 

leads to the proposition to extend the higher range of this 

parameter to 24 MHz. 

For the parameter 𝜎, lower values than 0.8 MNepers/s 

would result in unstable oscillation on the chips and are 

unlikely from a payload manufacturer point of view. 

Higher values than 8.8 MHz would not add any visible 

degradation. It is proposed to keep the same parameter 

range.  

  

This proposition is summarized in Table 2. It is further 

confirmed when looking at the impact of the TM on the 

measurements using new modulations. Works like [6] or 

[7] show that the pseudo-range bias created by the 

proposed L5 threat model will have a worst case pseudo-

range error of similar order of magnitude than the ICAO 

L1 C/A threat model, ie a few meters, thus confirming the 

need to monitor this kind of threat. 

 

User design space and protected regions for L1 and L5 

 

The term User Design space refers to the values of pre-

correlation bandwidth and correlator spacing that a 

receiver uses for tracking a signal. Indeed, GNSS receivers 

have specific parameters depending on their manufacturer 

and targeted audience / cost / performances. 

 

 

Table 1 –Threat Model parameters for GPS L1 C/A 

[2] 

 Δ (chip) 𝜎 (MNepers/s) 𝑓𝑑 (MHz) 

TM A [-0.12 ; 0.12] - - 

TM B - [0.8 ; 8.8] [4 ; 17] 

TM C [-0.12 ; 0.12] [0.8 ; 8.8] [7.3 ; 13] 

 

 

 

 

Table 2 – Proposed Threat Model parameters for L5 

 Δ (chip) 𝜎 (MNepers/s) 𝑓𝑑 (MHz) 

TM A [-0.6 ; 0.6] - - 

TM B - [0.8 ; 8.8] [1 ; 24] 

TM C [-0.6 ; 0.6] [0.8 ; 8.8] [1 ; 24] 

 

 

 



 

 
Figure 2 – User design space and protected regions (in green) for 

(a) GPS L1 C/A Early Minus Late,  (b) GPS L1 C/A Double Delta,  (c) GPS L5 users 
 

The pre-correlation bandwidth corresponds to the 

bandwidth of the filter of the RF front-end. Low values of 

pre-correlation bandwidth results in the rounding of the 

correlation shape, thus decreasing the overall accuracy of 

the correlation peak tracking. It would also result in the 

filtering of some of the EWF. 

The correlator spacing is a parameter of the delay lock 

loop, corresponding to the spacing between the early 

correlator and the late correlator. Lower correlator spacing, 

associated with large bandwidth, will usually permit to 

reach better tracking accuracy and multipath robustness 

[8]. The chip spacing also depends on the type of 

discriminator used. For L1 C/A signals, both Early-Minus-

Late (E-L) and Double Delta (DD) discriminators are 

considered, while for L5, only E-L is considered. 

 

These parameters are essential since they will affect the 

error induced on the pseudo-range measurement by EWF. 

In particular, for differential users, if the reference and the 

rover receivers have different user design characteristics, 

the pseudo-range bias created by the EWF will not be 

appropriately corrected through differential correction. 

 

Consequently, [3] has defined some protected regions in 

the user design space, where the users are confirmed to be 

protected against EWF, either through detection and alert 

to the user, or by confirming that the EWF will not create 

an error superior to a required threshold after differential 

corrections. 

For the moment, no protected region has been standardized 

for GPS L5 signal, so the suggested regions are only a 

proposition of the authors, based on the results presented 

in this paper. 

The considered user design spaces and the associated 

protected regions are shown in Figure 2. 

 

GENERAL DESCRIPTION OF SQM 

 

EWFs create some distortion on the correlation function. 

The main family of EWF monitoring algorithm, named 

Signal Quality Monitoring (SQM) [3] is based on the 

observation of the correlation function of the received 

signal at different points. By choosing the right 

combination of correlators, it is possible to observe an 

anomaly in the symmetry or on the slope of the correlation 

function. 

SQM is based on the observation of 2 kinds of metrics:  

 ratio metrics, defined in Eq. 1, 

 symmetry metrics, defined in Eq. 2. 

 

𝑅𝑚 = 𝐼𝐸
𝑚

𝐼𝑃
, or 𝑅𝑚 = 𝐼𝐿

𝑚

𝐼𝑝
 Eq. 1 

Δ𝑚 =
𝐼𝐸

𝑚 − 𝐼𝐿
𝑚

2𝐼𝑃
 Eq. 2 

Where, 

 𝐼𝐸
𝑚, 𝐼𝐿

𝑚, 𝐼𝑃 stands for the early, late and prompt 

correlator value on the in-phase signal 

component. 

 𝑚 is the index corresponding to a particular 

correlator pair. 

 

These metrics are corrected so that their mean value in 

absence of EWF is equal to 0. The correction comprises the 

possible biases due to the definition of the metric and the 

effects of the pre-correlation filter on the metrics. 

 

In EGNOS and LAAS [9], a particular version of SQM 

algorithm – called SQM2b – is used. It relies on three 

distinct pairs of correlators: one pair for tracking and two 

pairs for SQM metrics computation. The final detection 

test is done by checking if any one of the metrics exceeds 

a threshold 𝑇. 

 

𝛾 = max (
𝑅1

𝑇(𝑅1) ,
𝑅2

𝑇(𝑅2) ,
Δ1

𝑇(Δ1) ,
Δ2

𝑇(Δ2)) ≥ 1 

 

The detection threshold is determined with regards to the 

distribution of the metrics, in order to comply with a false 

alarm probability. Therefore, there is a need to model the 

distribution of the metrics, through models or 

measurements. 

 

ADAPTATION OF SQM TO GPS L5 SIGNAL AND 

CONSIDERATION OF MODERN GPS L1 C/A 

RECEIVERS 

 

The same SQM principle has been adapted to the GPS L5 

signal. The main difference will be the location of the 

correlator pairs, which will be farther away from the 

prompt correlator when expressed in fraction of L5 chips, 

due to the limited bandwidth of the L5 signal. Indeed the 



L5 correlation peak is rounded due to this limited 

bandwidth, which makes the area around the correlation 

peak inadequate for the observation of distortions. 

 

Also, the study of SQM using modern L1 C/A receivers is 

of current interest, to check if the legacy SQM2b design is 

still valid with current monitoring receivers. 

 

The first considered receiver is a commercial receiver 

dedicated to monitoring stations (Novatel G-III). This 

receiver has only been used with the GPS L1 signal due to 

the unavailability of an L5-compatible antenna. This 

receiver provides 13 correlator outputs on L1 C/A signals.  

The other considered receiver is a software receiver 

operated by the European Space Agency (ESA). This 

receiver is able to track both GPS L1 C/A and GPS L5 

signals. This receiver provides 61 correlator outputs on L1 

C/A signals, and 23 correlator outputs on L5 signals.  

The values of the receiver parameters used in this study are 

given in Table 3. 

 

The parameters of the current monitoring stations for 

EGNOS, called RIMS-C, are recalled in the first column. 

Note that the main difference between the considered 

receivers and the current monitoring receivers is the larger 

pre-correlation bandwidth used in the RF front-end. 

 

Description of measurement datasets 

 

The new thresholds for L5 and modern L1 C/A receivers 

are determined through a process aiming at respecting the 

requirements for false alarm probability (𝑃𝑓𝑎) and missed 

detection probability (𝑃𝑚𝑑), based on different 

measurement datasets. 

 

The measurement datasets consist in correlator outputs 

collected with the considered receivers. They are in 2 

forms: 

 Real time series of correlator outputs from a 

Novatel G-III receiver, 

 Statistical parameters (standard deviation) of each 

correlator outputs from Novatel G-III and ESA 

receivers. See Figure 3 for an illustration of such 

data for the ESA L1 dataset. 

 

Four datasets are used in this study, shown in Table 4. They 

are representative of the receiving conditions of GNSS 

signals in monitoring stations. In particular, the data 

coming from the ESA receiver is a concatenation of several 

data collection done at different sites, thus providing some 

kind of spatial diversity with regards to the constellation 

geometry. 

 

 
Figure 3 – Illustration of statistical data: 1-𝝈 envelope 

of the correlator outputs for ESA receiver on L1 

 

Determination of detection thresholds 

 

The considered 𝑃𝑓𝑎 and 𝑃𝑚𝑑 required as inputs for the 

threshold determination are deduced from the initial 

system requirements and the system implementation. The 

initial system requirements are: 

 A false alarm probability 𝑃𝑓𝑎
0 = 1.5.10−7 per 

epoch, per satellite and per metric 

 A missed detection probability 𝑃𝑚𝑑
0 = 1.10−3 per 

satellite failure 

 A Maximum Error Range Residuals (MERR) 

under 3.5m. The MERR is the maximum 

undetected error tolerable at the airborne receiver 

after differential corrections. Tolerable means that 

the error will not produce any hazardous 

misleading information. The chosen value 

corresponds to the maximum tolerable error for a 

GAD B system at 5° elevation [10]. 

 

The methodology to derive the 𝑃𝑓𝑎 and 𝑃𝑚𝑑  required for 

the threshold determination at the monitoring station level 

depends on the system implementation, with parameters 

such as the number of monitoring stations, the number of 

monitoring receivers per monitoring stations, the voting 

algorithm, etc. Details on this implementation in the 

EGNOS system cannot be provided in this article. For this 

study, the considered 𝑃𝑓𝑎 is 3.162.10−4 and the considered 

𝑃𝑚𝑑  is 1.82.10−2. 

 

 

Table 3 – Receiver assumptions for L1 and L5 
 RIMS-

C, L1 

Novatel 

G-III, L1 
ESA, L1 ESA, L5 

Pre-correlation 

bandwidth (MHz) 
16 24 

Pre-correlation 

filter type 
6th order Butterworth 

Corr. spacing for 

tracking (chip) 
0.10 0.10 0.365 0.5 

Corr. spacing for 

monitoring (chip) 

0.15, 

0.20 

0.15, 

0.20 

0.15, 

0.2 

1.28, 

1.10 

 

Table 4 – Multipath data sets characteristics 

 
Type of 

data 
Siting 

Frequency 

band 
Receiver 

Data 

set #1 

Time 

series 

Capgemini, 

Bayonne 
L1 

Novatel 

G-III 

Data 

set #2 
Statistical 

Capgemini, 

Bayonne 
L1 

Novatel 

G-III 

Data 

set #3 
Statistical 

Multiple 

sites 
L1 

ESA SW 

receiver 

Data 

set #4 
Statistical 

Multiple 

sites 
L5 

ESA SW 

receiver 



For statistical data sets, thresholds determination has been 

made following the steps detailed below: 

1. Determination of the metrics distribution from the data 

sets by using the standard deviation of the metrics for 

low elevation (0 to 15°) and assuming that metrics 

have a Gaussian distribution. Metrics’ standard 

deviations are assumed to follow the formulas given 

below: 

𝜎𝑅𝑚 = 𝜎𝐼𝐸
𝑚 or 𝜎𝐼𝐿

𝑚 

𝜎∆𝑚 = 0.5 ∗ √𝜎𝐼𝐸
𝑚

2 + 𝜎𝐼𝐿
𝑚

2  

Where 𝜎𝐼𝐸
𝑚 and 𝜎𝐼𝐿

𝑚 are the standard deviations of the 

early and late correlator outputs of the 𝑚-th correlator 

pair. This model of the correlator outputs assumes that 

the different correlators are uncorrelated and that the 

prompt does not bring any additional noise. 

2. Definition of the range of thresholds to be tested: from 

3 to 7 standard deviations in order to guarantee the 

required 𝑃𝑓𝑎 and to have the better 𝑃𝑚𝑑 , 

3. Selection of all sets of thresholds that ensure the 

required 𝑃𝑓𝑎: the 𝑃𝑓𝑎 is computed for each set of 

thresholds thanks to the probability density functions 

of the four metrics, 

4. Identification of the EWF that generate a pseudo-range 

error above 3.5m on corrected users of the protected 

regions in the User Design space, 

5. Determination of the metrics distribution for the 

retained EWF: EWF are assumed to only have the 

impact of shifting the metrics’ mean without changing 

their standard deviation, 

6. For each retained EWF parameter, the 𝑃𝑚𝑑 is 

calculated from the probability density functions of the 

four metrics affected by the retained EWF. The worst 

𝑃𝑚𝑑  among these retained EWF for a given threshold 

set is stored. This step corresponds to the identification 

of the least detectable EWF by the considered set of 

thresholds. 

7. Determination of the best 𝑃𝑚𝑑 : Thresholds ensuring 

the lowest stored 𝑃𝑚𝑑  are selected. 

 

For real time data sets, thresholds determination has been 

made following the steps detailed below: 

1. Determination of the metrics distribution from the 

time series of correlator outputs, for satellites between 

0 and 15° elevations. 

2. Definition of the range of thresholds to be tested: from 

10 to 12 standard deviations in order to guarantee the 

required 𝑃𝑓𝑎 and to have the better 𝑃𝑚𝑑 . See the 

discussion towards the end of the article, on the non-

Gaussian behavior of the real datasets, leading to these 

higher thresholds. 

3. Selection of all sets of thresholds that ensure the 

required 𝑃𝑓𝑎: the 𝑃𝑓𝑎 has been computed for each set 

of thresholds by normalizing each metric of the data 

sets by its threshold and incrementing the number of 

false alarms whenever at least one normalized metric 

exceeds one. The 𝑃𝑓𝑎 is then the ratio between the 

number of false alarms and the total number of data, 

1. 𝑃𝑚𝑑  determination and thresholds selection is then 

made as in steps 4-7 of the previous description. 

 

The methodology for computing the thresholds is 

summarized in Figure 4 for real measurements. 

 

 

 
Figure 4 – Methodology for computing the detection 

threshold from raw data 

 

SIMULATION OF SQM DETECTION 

PERFORMANCES 

 

The presented methodology has been applied to the 4 

datasets presented in Table 4. The SQM detection 

performances are assessed on 3 criteria: 

#1  The 𝑃𝑚𝑑  of the least detectable EWF creating a 

differential range error above 3.5 m, 

#2  The percentage of undetected sets of TM 

parameters, 

#3  The maximum range error for undetected EWF. 

 

It is important to note that only criteria #1 is a requirement 

of ICAO. The other 2 criteria are presented for a qualitative 

assessment of the SQM algorithms. 

 

Compliance of the 𝑷𝒎𝒅 of the least detectable EWF 

with ICAO requirement 

 

The EWF detection threshold methodology requires the 

computation of the first performance criterion. Indeed, the 

retained set of thresholds is chosen because it will give the 

best 𝑃𝑚𝑑  for the least detectable EWF creating a 

differential range error above 3.5m for any users of the 

Protected Regions. 

 

In order to further refine the analysis of the 𝑃𝑚𝑑 , the 

analysis has been done for users of each Protected Regions 

of the User Design Space. It means that once the set of 

thresholds has been chosen thanks to the previous 



methodology, the 𝑃𝑚𝑑  of the least detectable EWF creating 

a differential range error above 3.5m, for a user of the 

designated Protected Region, is computed. 

While the Protected Regions are defined by ICAO for L1, 

they are not defined for L5. Therefore, the L5 regions are 

chosen by dividing the User Design Space as shown in 

Figure 2.  

 

The resulting region-specific 𝑃𝑚𝑑 are given in Figure 5 and 

Figure 6. For L1 and L5, some regions highlighted in green 

are compliant with the required 𝑃𝑚𝑑 . 

 

For L1, a lot of regions are not compliant, which is quite 

surprising, since L1 SQM has been validated in prior 

works. Two causes could be at the origin of this results. 

 The measurement datasets comprise large punctual 

errors, associated to very low elevation and to instants 

leading to loss-of-lock or convergence periods after 

reacquisition. Therefore, these large errors artificially 

increase the standard deviation of the dataset, and may 

also result in non-Gaussian distribution (especially in 

the tails of the distribution). 

 The location of the monitoring correlator pairs was not 

optimized regarding the receiver configurations 

associated to the datasets. 

 

For L5, the compliance is reached in most of the regions. 

This kind of results could be used to provide guidance for 

the definition of protected regions in the L5 User Design 

Space. 

 

 

 

 

 

 

 

 

 
Figure 5 –𝑷𝒎𝒅 performances for the different 

Protected Regions of a L1 C/A user, for datasets #1-3 

 
Figure 6 –𝑷𝒎𝒅 performances for the different 

Protected Regions of a L5 user, for dataset #4 

 

SQM qualitative detection performances for different 

types of users 

 

This section deals with the performance criteria #2 and #3. 

For these criteria, an EWF is considered as undetected if 

the average value of the metrics is below the detection 

threshold. There is no more consideration of the metrics 

standard deviation and missed detection probability. Figure 

7 shows the exact methodology used for computing these 

criteria. 

 

These criteria are obtained by testing each values of TM 

parameter range presented in  

Table 1 and Table 2. 

The increment on the parameter range is 0.01 chip for Δ, 1 

MHz for 𝑓𝑑 and 1 MNeper/s for 𝜎 for L1, and 0.1 chip for 

Δ, 1 MHz for 𝑓𝑑 and 1 MNeper/s for 𝜎 for L5. 

Also, a range of parameters of the user design space, 

consisting of a parameter couple {pre-correlation 

bandwidth, chip spacing} may be tested for the maximum 

range error determination, depending on the type of user 

considered, as explained below. 

 

 
Figure 7 – Methodology for determining the 

qualitative SQM detection performance 



Different types of users have been defined, depending on 

the use of SQM algorithms, the user design space and the 

use of differential corrections. 

The 5 types of users are: 

 Independent user. This user does not use SQM 

and its receiver parameters can take any values in 

the user design space. This is the worst-case user. 

 Monitoring station, without SQM. This user is 

similar to the independent user, except that its 

receiver parameters are fixed to one set of 

parameter, detailed in Table 3. 

 Monitoring station, with SQM. This user is 

similar to the previous user type, except that 

SQM is implemented. Therefore, the maximum 

range error will be chosen among the cases where 

an EWF is not detected, thus reducing it. 

 Protected user. This user is protected by SQM, 

but its receiver parameters can take any values in 

protected regions of the user design space. 

 Corrected user. This user is protected by SQM 

and its receiver parameters can take any values in 

the protected regions of the user design space. 

Additionally, differential corrections are used, so 

that the common range error between the 

reference station and the user is subtracted from 

the range error. This user is the best-case user. 

 

In the case of the corrected user on L1, it should be 

mentioned that the monitoring receiver (RIMS-C for 

EGNOS) may have a different configuration than the 

reference receiver (RIMS-A), which computes the 

differential corrections. The reference receiver has the 

following parameters: 𝐵𝑊 = 16 MHz, 𝐶𝑠 = 0.1023 chip. 

For L5, it has been assumed that the reference receiver has 

the same parameter as the monitoring receiver, ie 𝐵𝑊 =
24 MHz, 𝐶𝑠 = 0.5 chip. 

 

Figure 8 shows an example of detection performances of 

SQM on GPS L5 signals, using the L5 ESA receiver. 

Figure 9 shows an example of contour plot used for the 

determination of the maximum range error for undetected 

EWF. This particular contour plot has been drafted for a 

corrected user using L5 signals. 

Finally, Table 6 and Table 7, placed the end of the article, 

show the results for SQM detection performances for all 

types of users for all datasets. 

 

Here are a few conclusions on this part of the study: 

 Large differences between the different types of users 

can be observed, showing the importance of the 

implementation of SQM algorithms and the 

effectiveness of the limitation of the User Design 

Space to Protected Regions. 

 For corrected users (which are the users targeted by a 

system such as SBAS), users using the L1 signal with 

modern receivers are found to be affected by large 

undetected differential pseudo-range error, above the 

required 3.5 m threshold. Also, the low number of 

detected EWF confirms that either the detection 

threshold or the monitor design is not adapted to the 

monitoring function. 

 For corrected users, users using L5 signals fulfill the 

requirement of maximum undetected differential 

pseudo-range error below 3.5 m. 

 

 

 
 

Figure 8 – Simulation of SQM detection performances 

on L5 for TM-B 

 

 
Figure 9 – Contour plot for determination of 

maximum pseudo-range error for a corrected user 

using L5 signals 

 

 

DISCUSSION ON THE USE OF STATISTICAL 

DATA FOR THRESHOLD DETERMINATION 

 

Before concluding this article, the authors would like to 

point out two interesting aspects encountered in this study. 

One particularity of this study has been to take into account 

2 kinds of data for the threshold computation: statistical 

data (standard deviation of correlator outputs) and raw data 

(time series of correlator outputs recorded during 30 

hours). 

Datasets #1 and #2 were collected in order to study the 

possible limitations of considering statistical data. Indeed, 

the standard deviation of each correlator computed for 

dataset #2 is coming from the same time series used in 

dataset #1. 

  



Gaussian approximation of the metrics distribution 

 

The comparative analysis of the metrics distribution under 

the different assumptions shows that the distribution of the 

real correlator outputs is not Gaussian, especially towards 

the tails of the distribution, as shown in Figure 10. 

 

This notably leads to high values of the metrics, especially 

at low elevation. This leads to the consideration of a much 

higher detection threshold for dataset #1, in order to be able 

to comply with a given 𝑃𝑓𝑎, thus leading to worse missed 

detection performances. 

 

This comparison shows that the use of statistical data lead 

to optimistic SQM performances, as can be observed when 

comparing datasets #1 and #2. Datasets #2 provides better 

performances in terms of 𝑃𝑚𝑑  than dataset #1, while there 

are coming from exactly the same measurements. 

 

One way to improve the situation, and make the metrics 

distribution more Gaussian-shaped, would be to exclude 

some outliers in the data collection, or to assess the 

distribution after an elevation mask.  

 

 
Figure 10 – Comparison of the distribution of real 𝚫𝟏 

metrics (dataset #1) and the Gaussian assumption 

(dataset #2) 

 

 

Correlation between the metrics 

 

Another potentially abusive assumption of the statistical 

dataset was to consider the noise on different metrics as 

statistically independent, as no correlation coefficient was 

available. 

However, in reality, the noise and multipath effects on the 

correlation function are correlated. Therefore, the metrics’ 
behavior may not reflect reality when considering this 

uncorrelated correlators. 

 

This is shown in Figure 11, where it can be observed that 

the two Δ metrics are correlated in dataset #1, contrary to 

the metrics generated from dataset #2. 

 
Figure 11 – Illustration of the correlation of metrics in 

dataset #1 (red) and dataset #2 (blue) 

 

Similar correlation has been observed between the 

different metrics. The Pearson product moments 

correlation coefficient 𝜌𝑥,𝑦 have been computed for couple 

of metrics in Table 5 and illustrated in Figure 12. 

𝜌𝑥,𝑦 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑥𝜎𝑦
 

 

Table 5 – correlation coefficient between the different 

metrics in dataset #1 

 Δ1 Δ2 𝑅1 𝑅2 

Δ1 1 0.91 0.54 -0.73 

Δ2 0.91 1 0.45 -0.71 

𝑅1 0.54 0.45 1 0.17 

𝑅2 -0.73 -0.71 0.17 1 

 

 
Figure 12 – Illustration of the correlation between the 

different SQM metrics 

 

When using a statistical dataset, the sets of detection 

thresholds are determined together so that the overall test 

(ie that at least one of the four metrics exceeds its 

threshold) provides the required 𝑃𝑓𝑎, assuming 

independent Gaussian distribution for each metrics. 

However, taking into account a correlation between the 

metrics would yield different sets of thresholds. 

On the other side, this correlation between metrics is taken 

into account when considering the real time series.  



CONCLUSION AND FUTURE WORK 

 

This paper has presented a methodology to compute the 

SQM monitoring detection thresholds based on different 

datasets. 

The methodology has been applied to datasets 

corresponding to three L1 C/A data collection with modern 

receivers, and one L5 data collection. 

Compliance with the required 𝑃𝑚𝑑  for the least detectable 

EWF creating a differential range error above 3.5m, 

requested by ICAO has been assessed. 

The SQM qualitative detection performances have been 

determined through the percentage of detected EWF. For 

undetected EWF, the maximum (differential) pseudo-

range error is also provided. The SQM detection 

performances were computed for different types of users. 

 

The study shows that the current implementation of SQM 

algorithms does not provide satisfactory performances on 

L1 C/A signals, with modern receivers, and with the 

detection threshold methodology. On the contrary, L5 

signals can be adequately monitored with adapted SQM 

algorithms. 

An other result is the dependency of the SQM detection 

performances to the region of the User Design space. Some 

regions are better protected than others, and would comply 

with the targeted requirement. This analysis by region can 

be useful to define the protected region for L5 users. 

 

Finally, the use of statistical description of correlator 

outputs requires some particular attention. Notably, when 

analyzing true time series of correlator outputs, a non-

Gaussian distribution of the metrics can be observed, 

together with a correlation between the different metrics. It 

is advised to either restrain the use of statistical description 

of correlator outputs, and to privilege real time series, or to 

complexify the modeling of the correlator outputs by 

introducing correlation between the metrics and a model of 

outliers. Also, the removal of some data on the real time 

series, for example, very low elevation data, or data 

corresponding to the convergence period of the tracking 

loops after a reacquisition may also be recommended. 

 

Future work on this topic includes the adaptation of the 

SQM algorithm to modern L1 C/A receivers, by finding a 

new location of monitoring correlator pairs. With newer 

receiver, it is also possible to have more correlator pairs, 

thus opening the possibility to monitor distortions with 

more than 4 metrics and with more points of the correlation 

function. Finally, new combination of several metrics to 

comply with a global 𝑃𝑓𝑎 may be researched, taking into 

account the correlation between metrics and other voting 

scheme than a single threshold crossing. 
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Table 6 - SQM detection performances results for L1 datasets 

User type Dataset 

TM-A TM-B TM-C 

Percentage of 
detected EWF 

PRE (m) Percentage of 
detected EWF 

PRE (m) Percentage of 
detected EWF 

PRE (m) 

E-L DD E-L DD E-L DD 

Corrected 
user 

Novatel G-III 
(raw) 

0 5.9 16.3 0 10 25.4 5.4 10.2 17.7 

Novatel G-III 
(stat) 

38.5 1.4 2.9 27 7 5.1 5.4 6.3 7 

ESA (stat) 0 5.9 16.3 7.9 7 6,9 11.5 10.2 17.7 

 

 

Table 7 - SQM detection performances results for ESA L5 (ESA statistical dataset) 

User type SQM 

TM-A TM-B TM-C 

Percentage of 
detected EWF 

PRE (m) 
Percentage of 
detected EWF 

PRE (m) 
Percentage of 
detected EWF 

PRE (m) 

Independent user 
No NA 

9.8 
NA 

69.5 
NA 

78.5 

Monitoring station 7.8 67.1 76.1 

Monitoring station 

Yes 28.6 

5.4 

63 

15.5 

55.6 

19.6 

Protected user 6.5 15.8 19.9 

Corrected user 1.0 2.4 2.5 
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