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ABSTRACT

The Ground Based Augmentation System (GBAS) is being
studied as a potential means to provide Category I/l
precision approach operations. The current technology, the
Instrumental Landing System (ILS) is expensive to
maintain and suffers from multipath effects which inhibit
capacity in allweather conditions. The GBAS Approach
Service Types (GASTSs) have been ddiine apply to the
various levels of vertically guided approach for which up
to GAST C relating to Category | precision approach have
been standardized. GAST D is under development to
support Category Il/lll precision approaches using the L1
C/A signal of he GPS constellation. A GAST F concept is
being developed within the SESAR framework on the basis
of a multiconstellation (GPS and GALILEO) muiti
frequency environment (L1/L5 and E1/E5a). In order to
assess which processing models are to be selectelefor t
GAST F solution, the error models for the new signals must
be developed taking into account the impact of the antenna
and receiver. This paper presents the analysis of the noise
and multipath characterisation using real measurements
taken at an experiméal ground station.

INTRODUCTION

The ILS is used for guiding aircraft on final approach
during precision approach operations at almost all the
major airports worldwide. The ILS whilst not expensive to



install requires frequent and expensive maintenance.
Furthermore, the system can only support a straight
approach trajectory for a single runway end, such that
multiple installations for one airport are required to support
multiple runwayg1]. Known issues also include multipath
caused by uneven ground surface or other aircrafts on the
airport surface which limit the capacity by restricting
separdon minima. Using the Global Navigation Satellite
Systems (GNSS) with the GBAS could provide the safe
and reliable guidance required with greatly improved
flexibility in the definition of approach tracks. Moreover,
GBAS could be a more cost effective da@n since only

one ground subsystem installation could be used to support
multiple runway approaches at a single or potentially
multiple aerodromes. The GBAS enhances the core
constellation by providing differential corrections and
integrity monitoring. Dfferent types of services were
developed classified with the acronym GBAS Approach
Service Type (GAST), with GAST C supporting the
Category (CAT) | precision approach type using Single
Frequency (SF) and Single Constellation (SC) position
solution. GAST Dis designated for the Category Il/IlI
precision approach operations utilizing the L1 C/A signal
of the Global Positioning System. With the advent of
GAST D, a secondary shorter smoothing filter time
constant of 30s has been introduced to limit the maximum
residual differential ionospheric error, whilst GAST C is
based on a 100s time constfljt Despite this, the primary
threat to GBAS users remairthe gross ionospheric
differential error induced by strong gradients. GBAS like
all differential navigation systems relies on strong spatial
correlation of errors such as this ionospheric delay between
the ground reference stations and aircraft, suchttest
may be mitigated through the broadcast of corrections.
However, extreme ionosphere storms, causing large
ionosphere differential errors must be protected against and
monitoring for such threats inevitably impacts on
continuity and availability, poteially resulting in a
degradation of service. One means to overcome this
problem is to use the signals on Multiple Frequencies (MF)
to form combinations which partially or totally remove the
delays caused by the ionosphf&g[3]. Furthermore, the
additional satellites available in the Multiponstellation
(MC) environment will significantly improve performance
by adding geometric redundancy. Dual frequency
techniques have been investigated in previous Wgk],
leading to two smoothing algorithms, Divergence Free (D
free) and lonosphere Free-f(ee) smoothing. The
differences between the two algorithms relate to the level
of mitigation of the ionepheric delay and the resulting
noise inflation of the final observables. Thefrde
technique removes the ionosphere delay in its entirety but
at the cost of increased noise on the observable used for
positioning. This is achieved through combining bdté t
code and phase measurements on two frequencies.-The D
free technique removes only the part of the ionospheric
delay relating to the transient temporal divergence, but no
increase in the standard deviation of the noise and
multipath over the single fregacy smoothing output
occurg[4] [5].

These techniques can thus be used to mitigate the
ionosphere and provide Cat II/1ll services when the GAST
D service would be unavailable (under ionospheric
gradient conditions or under poor geometry conditions).
The SESAR 15.3.7 project is developing th&S3 F
concept through the investigation of these processing
methodologies amongst others. In order to assess
accurately the performance which may be achieved, the
error model for the GALILEO E1 signal, the Galileo E5a
signal and the GPS L5 signals mustdetermined. It is
important to determine this firstly at the raw pseudorange
level before addressing the impact of smoothing.
Furthermore, different smoothing time constants and
correction update rates are being considered within the
SESAR framework whickvill require newly characterized
models than those presented within the MOPS and SARPs
[6] [7]. In addition, new GAST F constraints regarding the
antenna environment for the ground installation and on the
tracking configuration on the receiver may be defined
which would modify the impet of noise and multipath on
the measurement.

CURRENT ERROR MODEL

The error model of a GBAS is composed by different errors
contributing to the total error modelhe noraircraft
contribution of the residual errds given in[6] and[8] by

the formula:

41 Sae v o200
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Where:

x [ is the number of the receivers in the ground
subsystem. )

x  ajs the elevation angle for th&"ranging
source.

X The values of=, & &5and &, are given inTable
1

The main contribution to this type of error is given by noise
and multipath at the ground station, other sources of error
are due to residual atmospheric error due to the physical
separatiorbetween the ground station and the aircraft

Table 1 +Non-Aircraft Elements Accuracy
Requirement [6].

A \ ' ] A
GAD (degrees) tu to to (degrees)
A >5 0.5 1.65 | 0.08 14.3
B >5 0.16 | 1.07 | 0.08 155
>35 0.15 | 0.84 155
<35 0.24 0 0.04 I

NOISE AND MULTIPATH EVALUATION

The development of a new GBAS service, GAST F,
requires the knowledge of the error models for each signal
used over the two constellations. The model proposed for
until now is adapted only for the GPS L1 signal and
considers a smoothing filter time condtah100 seconds.

In GAST F new possible processing options should be used



and consequentially different smoothing time constant, the
evaluation of the errors before the smoothing filter in this
case can provide precious information to the user.

The evaluation of the multipath plus noise error on L1 has
been done using following the formula of the C@&zharier
(CMC) with Divergencerree combination of the phase
measuremer#]. This particular combination of code and
dual frequency phase measurement is composed mainly of
the noise and multipath error on the code measurement.
Theequation of th&€MC is:

% 1%s L & F 05 E4:05 F Og; e
Where:
X  &is the code measurement on L1;
X Ogand Ogare the phase measurement on L1 and
L2
x ULs F% , Band B are the frequencies of the

signals on L1 and L2.
Considering the model of the code and plmsasurement
as:

& L NE?2.@=E @®?°EG6E+EY;, ©)
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Where:
X  Ns the true range;
x TAtPc¥Hre the satellite and receiver clock
errors;

X  6is the troposheric delay;

X tand ¢arethe ionospheric delay related to the
frequency;

x  Ogand Og are the phase ambiguities related to
each frequency

X ¥sthe noise and multipath error on the code or

on the phase measurement, according to the
frequency.
Replacing the e((3), (4) and(5) in eq.(2) and removing
all the terms that are common in the three modéis
remaining terms are:

% /%s L k§ EY50F IFE Qs E Y5 F
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Considering the relation between the ionospheric delay and
the frequenciessed

(6)
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It is possible to compute tli@llowing relation:

sFHL @FC AL Ut (8)

It is possible to replace it in e@6) and simplify the
common terms in order to obtain:
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Where:

X Osgl 05 F2:05 F Og;

X YseLl Vg F= k% F Y0
In eq. (9) the first term Ygepresents the noise and
multipath affecting the code measurement, this error is
assumed to be zero mean over long peridtw second
term is the phase ambiguigpmbination, it is a constant
values and it is easily removable considering that the noise
and multipath are zeroeanover long period. The last term
is a combination of noise and multipath on the phase
measurementas for the noise and multipath on code
measuremernthis erroris assumed to be zero mean over
long period;this error can be considered rsgligible if
compared with the same error on the code measurement.
In caseof SF data is nodvailableto compute the CMC as
in eg.(2), onepossible combination is:

% /%s L & Fo5sLYEY,EO;Et+ (10)
It is possible to see that now the CMC as computed in eq.
(10) is affected by théonospheric delaynultiplied by 2
To remove this term from the CM@ can be computed
using the DF measurements from a ngadiation;
considering the models of the phase measurement and
removing the common terms:

05 F 06 L Fig F %; EKY%g F %g0 (12)

Knowing the relation of th@nospheric delay on dérent
frequencies as given in €7q), itis possible to replace these
relations in eq(11) andit is possible to find the following
relationship:

‘B F B, . .
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Where +s the ionospheric delay not related to any

frequency.
Just multiplying all the termby B :BS F Bf; it is
possible to obtain:

B ..
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In eq.(13) thefirst term T is the ionospheric delay on the

same fequency as the code measuremd; last one is
the difference of noise and multipath on the phase
measurement multiplied by a term related to the two used
frequency; this second term is negligible if compared to the
ionospheric delay.

It is therefore possible to evaluate teem +from a dual
frequency phase combination of a nearby station, and to
remove the influence of the ionosphere in eq. (10).



When applying directlyone of the twoformula for the
CMC computationit is possible to see some large errors
affectingit, which is not representing the multipath or the
noise error, but is in fact due to phase ambiguity in(Bq.
This effect is visible irFigure 1.

CMC (meters)

- 1 1 L 1 L 1 L L 1
185 26 27 28 29 3 31 32 33 34 35
Epochs (seconds) x10°

Figure 1 +Multipath and Noise Evaluation on L1

In order to have the correct evaluation of the multipath plus
noise impacon the L1 and L5 signals, the following work
has been done:
x ldentify groups of data corresponding to a
continuous tracking of the signal.
X Search inside each group of data for possible
cycle slip comparing thepredicted phase
measurement,ce (14), and the real onfg0]:

) 06 EO
@y L Opos EM" (14

Where
@is the predicted phase measurement
0 is the real phase measurement.
0%s the Doppler measurement
Gs the epoch index i

Rs the interval between thesY
measurement and the previous one.
If the absolute difference between the real phase
measurement and the predicted phase is bhigger
than 1 cycle or 1 wavelengtla cycle slip is
detected.
If no Doppler measurement are pFasin the data
another methodology must be used. The
computation of the doubldifferences on the
phase measurement can be used to detect cycle
slip [11]:

X X X X X
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The cycle slip is detected by comparing the value
of the real and predicted phase measurement, the
threshold has been setlatycle.For the case with
the doubledifferencesthe threshold is 0.5.
From each CMC series, according to the group of data, the
mean value of the CMC is removed in order to compensate
for the possible phase ambiguity over the measurertent

(19

is important tonote that becauseoise and multipath are
assumed to be zero mean over long period, the slices of
CMC with less than 3000 samples are not taken into
account In Figure2it is possible to see that the cycle slips
angl the phase ambiguity are removed from the CMC.

CMC (meters)

E L 1 1
3.5 26 27 28 29 3 3.1 32 33 34 35
Epochs (seconds) X 10°

Figure 2 - Multipath & Noise on L1 Corrected for the
Phase Ambiguity

Once that the CMC has been computed, the modelling of
the error for each satellite and for a 1° elevation bin is done.
An autoregressive (AR) model is used because it is a more
realistic representation of the noise plus multipath signal,
in fact it takegnto account the correlation time of the data.
The representation of the signal just using sigma as
representation of the standard deviation and considering it
as white noise is a too optimistic representation for
processing purpose#é genericAR model isrepresented

by the following formuld12]:

a
T:J; LFI
b@b

5T JF G E>J; (16)
Where

x  Tis thesignal at different lags

X  =pare the coefficiestaccording to order model.

X >!J;isa Gaussian noise, named the driving noise
The goal of the modelling process is to estimate the
=parameters, according to the model order, dmel
varianceor the standard deviation of the driving noise
each elevation bin. Different Matlab functioae used in
order tocompute the=parameters and the variance of the
driving noise, then a comparison between the function has
been done on order to check possible differences. They are
all computing the same parameters, but using different
methods.
LPC (data, order)This function find the coefficients of N
order forward linear prediction and the variance of the
driving noise.
ARCOV (data,orderEstimate AR model parameters using
covariance method and the variance of the driving noise
ARYULE (datgorder) Estimate autoregressive (AR)-all
pole model using Yul¥Valker[13] method and variance
of the driving noise.



ARMCOV (data,order)Estimate AR model parameters
using modified covariance method and compute the
variance of the driving noise.

ARBURG (data,order)Estimate AR model parameters
using Burg[14] method and compute the variance of the
driving noise.

These different methods all estimate the parameters of an
AR model, but use different computation techniques. The
following investigation aims at determining if one of these
methods is more appropriate to the targeted kind of data.

RESULTS
The methodology explained ithe previouschapter has
been applied otwo series of measurement
1. Datacollected at Braunschweig airport BLR the
9th July 2014. The first observation available is at 00h

T " DQG WKH ODVW REVHUYDWLR

interval between the observations is 0.5 seconds. The
antenna model is a Leica AB5 choke ring antenna
the stations are located at the paosisi given in Table
2.

2. Data Collected at Malaga airport GBAS Station
(courtesy of ENAIRE}he 30" March 2014. The first

REVHUYDWLRQ DYDLODEOH LV DW

RQH LV WKH GD\ DIWHU DW K 1
are recorded at 2 Hz only fdre GPS L1 C/A signal,
datacoming fromthe near monitoring station have
beenalsousedto compute the ionospheric delayhe
antenna, for the GBAS data, idvaltipath Limiting

Antenna(MLA).
Table 2 +ReferenceReceiverLocations
Indicator | Latitude[®] | Longitude[?] | Receiver
Type
BRO1 52.321444 | 10.543339 E | Javad
N Delta
BR0O2 52.322324 | 10.554618 E | Javad
N Delta
BR03 52.317001 | 10.567265 E | Javad
N Delta
BR04 52.321269 | 10.564586 E | Javad
N Delta

DLR data collection
Thefirst step is thechoice of the order modeit derives
from the analysisf threedifferent criteriathat provide an
estimation of the prediction error pow§t5] and are
commonly used to determine the order of an -auto
regressive model he criteria are:

X The Final Prediction Error (FPE)

X The Akaike Information Criterion (AIC)

X The Criterion Autoregresat Transfer (CAT).

OEG
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Where
X Qs the model order
X  %s the power of the prediction error
X  0Ois the number of signal samples
Error criteria
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Figure 3 zError Criteria for Satellite PRN 5
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Figure 4 *Coefficients and Driving Noise Standard
Deviation for Different Model order

Figure3 shows that the préical minimum order is around

5, however analyzing also the errors magnitude for the
lower model order has been found ttheg difference of the
error criteria between treecond and the fifth order model

is small (approximately betwed7 % for each criteria).
Therefore, a ? order model seems reasonably close to
represent the real signal, and has the benefit to keep the
model simpler than a higher order model.

In Figure 4, the comparison of the coefficients standard
deviation confirms the choice of the mod€he standard
deviation of the al coefficients for thé& @rder model is
larger than the other modetders, and from the second
order, the standard deviation starts to be almost similar.
The values of the a2 standard deviation are similar for all
the order model analyzed. The standard deviation of the



driving noise is similar for all the model orders auzad.
From the previous analysis the second order model has
been selected to model the noise and multipdile, t
equation that model the noise and multipath is:

TJ;LFUT:JFs, F55UT:JFt;
E>:J; (20)
In the next figures the values of thecoefficients and the
standard deviation of the &g noise process will be
show, the red lines represent the proposed coefficients and
the proposed model for the noise standard deviation.
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Figure 7 tNoise Mean Valuesand Proposed model

Each Elevation Bin
From the analysis of the previous figures, it is possible to
assess that for the analyzed data there are no differences in
the coefficients computed with the different Matlab
functions and even the standard deviation is similar for all
of them; for this reason in the next figures just the
ARMCOV function will be considered. Thes coefficient
model proposed is 81, instead the value ofs coefficient
model is 0.25 The standard deviation of the driving
process noise follows an elevati dependent exponential
curves, the model proposed for it is

%l
& amavade’ ¥ OATEE® Erau (21)

And it is represented by thheddashed line.
In order to be sure that the computed coefficients and
variance othe driving noise are consistent, the real signal
and the one generated by the use of the model parameters
are compared inFigure 8, and an analysis if the
autocorrelation function is shown Figure 9. These plots
show that the coefficients of the model reflects the
properties of the real signal.
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Figure 8 tReal CMC and Generated CMC for
Satellite PRN 2and 30° Elevation Bin
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Figure 9 *Autocorrelation Function for Satellite PRN
2 and 30° Elevation Bin
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Figure 10 +Autocorrelation Function for Satellite
PRN 2 and 3° Elevation Bin (zoom from 1000 to
1000)

Malaga GBAS station data collection

As for theprevious set of datdhe first step is the choice

of the model order. Using the same methodology explained
before the analysis of the FPE, AIC and CAT has been
done followed by the analysis of the coeffici§rifandard
deviation.
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Figure 12 +Coefficients and Driving Noise Standard
Deviation for Different Model order

The analysis ofigure 11 shows that the practical model
order is at 10, but analyzing also the lower model order
error magnitudgit is possible to see that the magnitude of
the three criteria for the first model @rdis at most3%
bigger than the one providdy model order 10.

The choice of the®lmodel order seems to be appropriate
in order to have aeasonablyaccurate model but not too
complex. The analysis dfigurel2shows that the standard
deviation of the=; coefficients is really similar for all the
model orderand also the driving noise standard deviation
has almost the same values for all the ondedels Thanks

to these two analysis is possible to select 1 as model order.
The equation of the autoregressive modet this set of
data,is:

T:J; L F5 UT:JF s; E>:J; (22
The next plots will show thes; coefficients mean and the
driving noise standard deviation computed for all the

elevation angle between 10 and 90.
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Figure 13 +A1 Coefficients: Mean Values and Related
Standard Deviation
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From the analysis of the previous figures, it is possible to
assess that for the analyzed d#tare are no differences in
the coefficients computed with the different Matlab
functions and even ¢hstandard deviation is similar for all
of them; like for the previous case in the next plot only the
ARMCOV function will be used. Thes coefficient model
proposed is @9, the standard deviation of the driving
process noise has a constant value ufifilevation angle
and after follows an elevation dependent curves, the model
proposed for it is:
x FrarstulU HE rdxt{between 10° and 35
elevation angle
x 0.0061*EF0.109EIl.-0.3 for
between 55° and 75
X -0.004*El+0.647for elevationangle bigger than
75°

elevation angle

As for the previous data analysthe next two plots will
show the comparison between a slice of the real CMC and
the generated one using the AR model and the related
autocorrelation function.

1.5

—real signal
—signal generated ||

CMC (meters)

1000 1500 2000 2500 3000 3500
Epochs (0.5 seconds)

Figure 15 +Real CMC and Generated CMC for
Satellite PRN 18 and 30° Elevation Bin

500

Figure 16 *Autocorrelation Function for Satellite
PRN 18 and 30° Elevation Bin

Figure 17 +Autocorrelation Function for Satellite
PRN 18 and 30° Elevation Bin (zoom fron+150 to
150)

20" Order model analysis

The aim of this part is to show the results obtained using
the 20" order model to generate the CMC. In order to have
a better compasbn between orders model the same slices
of signal that have been used in the previous chapter will
be used.

The first plots show the results obtained for the DLR data
collection.



Figure 18 +Real CMC and Generated CMC for
Satellite PRN 2 and 30° Elevation Binwith a 20"
order model

Figure 19 *Autocorrelation Function for Satellite
PRN 2 and 30° Elevation Bin (zoom from+200 to 200)
with a 20" order model

As it is possible to seeusing the 20 order model the
signals have the same statistical property and the
autocorrelatiorfunctions have the same shape.

In the next plot theresults obtainedy applying order
model 20 to the Malagairport data collection will be
shown.

Figure 20 +Real CMC and Generated CMC for
Satellite PRN 18 and 30° Elevation Binvith a 20"
order model

Figure 21 Figure 22 zAutocorrelation Function for
Satellite PRN 18 and 30° Elevation Bin (zoom from
200 to 200with a 20" order model

From the previous two figures it is possible to see that the
use of order model 20 permit to have an autocorrelation
function, of the geerated data, similar to the one of the real
data.

CONCLUSION

We have presented a proposal for the estimation of noise
and multipath using a fbree combination. In order to
remove possible phase ambiguity and cycle slip on the
phase a phase based cycle slip detector has been
implemented, finally the CMGwvas modelledusing an
autoregressive method. The application of this
mettodology to two different data dettions using only
single ground receivehas provided good resultsowever

it is important to note that thiesultsprovided for the DLR

data collectionare not representative of a certificated
GBAS ground station because they are not conform with
the siting antenna and receiver constraints. One advantage
of this method is that it provides more information about
the noise and multipath temporal correlationnthjast
describing the time series by its total standard deviation.
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