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Abstract
This paper describes a parallel approach for com-

puting an air traffic complexity metric that is based on
dynamical systems. It is important in order to quan-
tify the complexity and geometric features of traffic.
Lyapunov exponents are used for understanding the
geometry of current air traffic in the airspace. It is
computed on different points on a spatial grid. Those
values can indicate areas where air traffic controllers
must pay more attention because the complexity is
higher at those points.
A parallel implementation of the air traffic complexity
metric computation is introduced in this paper. Serial
implementation of this problem is too slow for real
world problems. This process is parallelizable because
Lyapunov exponent values can be computed simulta-
neously for each grid point in the airspace.

Intdouction
The number of aircraft in the airspace that air traffic

controllers have to direct is increasing but there exists
a maximum number of aircraft that one air traffic
controller can handle. It is not enough if we just
take into account the maximum number of aircraft
that are allowed at each moment in a sector of air
traffic controller. There are situations when they can
accept more aircraft. It depends on the geometry of
the traffic. Geometric features of the traffic have to be
included to quantify the complexity. This method for
evaluating complexity of air traffic takes into account
the intrinsic traffic disorder. ATC controllers can have
different workload even if the number of aircraft
present in the sector is the same. This complexity
computation method is based on dynamical systems.
There exists many different methods for measuring
the complexity of air traffic. The first complexity
indicator incorporating structural considerations along

with the simple number of aircraft is the “Dynamic
Density” of Laudeman et al. from NASA [8]. The
“Dynamic Density” is a weighted sum of the traffic
density (number of aircraft), the number of heading
changes (> 15 degrees), the number of speed changes
(>0.02 Mach), the number of altitude changes (>750
ft), the number of aircraft with 3-D Euclidean distance
between 0-25 nautical miles, the number of conflicts
predicted in 25-40 nautical miles. These factors are
summed together using weighting factors that were
determined by showing different traffic scenarios to
several controllers. B.Sridhar from NASA [10], has
developed a model to predict the evolution of such
a metric in the near future. Efforts to define “Dy-
namic Density” have identified the importance of a
wide range of potential complexity factors, including
structural considerations. However, the instantaneous
position and speeds of the traffic itself does not appear
to be enough to describe the total complexity associ-
ated with an airspace. A few previous studies have
attempted to include structural consideration in com-
plexity metrics, but have done so only to a restricted
degree. For example, the Wyndemere Corporation
proposed a metric that included a term based on the
relationship between aircraft headings and dominant
geometric axis in a sector [6]. The importance of
including structural consideration has been explicitly
identified in work at Eurocontrol. In a study to identify
complexity factors using judgment analysis, Airspace
Design was identified as the second most important
factor behind traffic volume [7]. Histon, et, al. [4], [5]
investigated how this structure can be used to support
structure-based abstractions that controllers appear to
use to simplify traffic situations. The previous models
do not take into account the intrinsic traffic disorder
which is related to the complexity. The first efforts
related with disorder can be found in [2]. This paper
introduces two classes of metrics which measure the



disorder of a traffic pattern.G.Aigoin has extended and
refined the geometrical class by using a cluster based
analysis [1]. All the previous metrics capture only one
feature of the complexity and are not able to produce
an aggregate metric which can capture all the possible
situations (high-low density, how-low convergence,
translation organization, round about organization).

Dynamical Systems

The first part of this algorithm consists of finding
a model of dynamical system that represent current
traffic situation at the airspace. Later this model can
be used for computing complexity values for different
points in the airspace. A dynamical system model
describes the traffic situation in the airspace. This
model consists of linear and non-linear part. This
model is based on aircraft positions and velocities
at each time step. Based on this input data we can
get coefficients of model of dynamical system. The
same process is repeated for each time step when the
complexity metric is computed.

Linear Model
For this approach a set of aircraft that are flying

in the airspace is considered as a dynamical system.
A model of dynamical system is computed for each
time step. A dynamical system can be described by
the following equation:

~̇X = A.~X +~B (1)

where ~X is the state vector of the system :

~X =
[

x y z
]T (2)

This equation describes relationship between air-
craft velocities ~̇X to aircraft positions ~X . This model
can be used for understanding the behaviour of the
traffic in the airspace. Eigenvalues of the matrix A
can be used for understanding the evolution of the
traffic. See Figure 1

Those values of A and B can be computed with
Least Square Minimization method. This way A and
B are found that can minimize the error E. For each
aircraft i, it is supposed that position ~Xi = [xi,yi,zi]

T

and speed vector ~Vi = [vxi,vyi,vzi]
T are part of input

data. An error criterion between the dynamical system

Fig. 1. Eigenvalues describe the behaviour of dynamical systems

model and the observations is computed :

E =
i=N

∑
i=1

∥∥∥~Vi−
(

A.~Xi +~B
)∥∥∥2

The position matrix and the velocity matrix have
following structure:

X =


x1 ... xN

y1 ... yN

z1 ... zN

1 ... 1

 V =

 vx1 ... vxN

vy1 ... vyN

vz1 ... vzN


Non Linear Extensions in Space

A non linear dynamical system is summarized by
the following equation [3]:

~̇X(t) = ~f (~X) (3)

where ~X is the state vector of the system (~X =
[x,y,z]T ) and ~f : C2 vector field, describe systems
which integral curves may fit the observed trajecto-
ries. This equation associates a vector speed ~̇X to a
position in the space coordinate ~X and then synthesis
a particular vector field. Based on the observations of
the aircraft (positions, speed vectors), the dynamical
system has to be adjusted with the minimum error.This
fitting is done with a Least Square Minimization
(LMS) method for which the following criterion is
used :

E1 =
i=N

∑
i=1
‖~Vi−~f (~Xi)‖2 (4)

where N is number of observations.
If we consider criterion E1 only, it can be shown

that there is an infinite number of vector fields ~f
which can be adjusted to the observations. In order
to keep the smoothest one, another criterion is added



which has to be minimized, the so-called “div-curl”
criterion :

E2 =
∫

R3
α‖∇div~f (~X)‖2 +β‖∇curl~f (~X)‖2d~X (5)

with α,β positive weights controlling the smooth-
ness of the approximation by focusing on constant
divergence or constant curl. In the following, we will
consider α = β = 0.5; in such case :

E2 = ‖∆~f (~X)‖2

where ∆~f (~X) is the Laplacian of the vector field ~f .
The joint minimization of E1 and E2 induces a

unique optimum vector field:

~f (~X) =
N

∑
i=1

φ(‖~X−~Xi‖).~ai +A.~X +~B

with ~ai parameter vectors (one for each observation),

φ(‖~X−~Xi‖) = Q(‖~X−~Xi‖3)

and

Q =

 γ 0 0
0 γ 0
0 0 γ


with γ = ∂2

xx +∂2
yy +∂2

zz
The resulting adjustment is done without error (⇒

minE1 = 0).
When α = β = 0.5, the vector spline function φ has

the following structure :

φ(‖~X−~Xi‖) = 12.‖~X−~Xi‖

(ri = ‖~Xi − ~X‖). It must be noticed, that farthest
observations has more weight in such computation. In
order to compute the smoothest vector field which fit
exactly the measures, all observations have to be taken
into account in the computation. This velocity field is
used for computing the Lyapunov exponents.They are
computed at different point of this velocity field. All
steps of the algorithms are described in the following
section.

Algortihm

The algorithm for computing Lyapunov exponents
can be divided into three parts:
• Computation of Dynamical Regression
• Computation of gradients

Fig. 2. Three main steps of complexity computation

• Computation of Lyapunov exponents
Those three steps are repeated for each time step t

until the final step T .

Dynamical Regression

The first part of this method consists of finding
the model of dynamical system that correspond to the
current traffic in the airspace. This part was described
in the previous section. The goal of this step is
to find the matrix A and the vector B.That were
described previously in the linear model part. Those
coefficients describe a velocity field that can be used
for computing Lyapunov exponents.

Gradient Computation

The Lyapunov exponents are computed at each
gridpoint. Lyapunov exponents values can be com-
puted only if gradients are known at those points. The
gradient of the velocity field are computed based on
the dynamical system model that was computed at
the previous point. Those values can be used as an
input data for the for the Runge Kutta method. Those



Fig. 3. High Lyapunov exponent value with six aircraft

computations for each grid point are independent and
can be computed simultaneously.

Lyapunov Exponent Computation

Lyapunov exponent measures the complexity for
each grid point where it is computed. Lyapunov
exponent measures the divergence of two trajectories
that have nearby initial points.Runge- Kutta method
is a method for numerical integration.

Lyapunov Exponents

Air traffic controllers can accept more aircraft if
aircraft are well structured. The first example shows
the situation with six aircraft. There are many poten-
tial conflicts. It causes high workload for air traffic
controller. See Figure 3 The second example has six
aircraft also but all aircraft have same direction. See
Figure 4. This is much easier for air traffic controller.
Those differences can be analysed with Lyapunov
exponents.

This metric for complexity relies on a measure
of sensitivity to initial conditions of the underly-
ing dynamical system called Lyapunov exponents. In
order to figure out what Lyapunov exponents are,
let consider a point and look at its evolution when
transported by the dynamical system. Let ~x0 be fixed
(initial point) and let γ be a point trajectory of the
dynamical system associated to the vector field ~f
given by :

γ(t,~x0) = ~x0 +
∫ t

0
~f (u,γ(u,~x))du (6)

Fig. 4. Low Lyapunov Exponent value with six aircraft

Assume now that trajectory is disturbed by a small
perturbation~ε, we have :

γ(t,~x0 +~ε) = γ(t,~x0)+∇~x~f (γ(t,~x)).~ε+o(‖~ε‖)

where ∇~x~f (t,γ(t,~x)) is the differential of the vector
field ~f at ~x. Divergence to nominal trajectory with
respect to time is thus ‖γ(t,~x0)−γ(t,~x)‖= D(t,s) (see
figure).

γ(t,~x) being defined as a flow :

∂γ(t,~x)
∂t

= ~f (t,γ(t,~x)) γ(0,~x) =~x

with ~f a smooth vector field, it is possible to show
that D(t) satisfies a differential equation also. Given a
nominal trajectory γ(t,~x0), then divergence of nearby
trajectories can be found up to order one in ‖~x−~x0‖
by solving :

∂D(t,~x)
∂t

= ∇~x~f (t,γ(t,~x)).D(t,~x) D(0,~x) = ‖~x−~x0‖

If the three space dimensions are considered (x,y,z),
and since the previous equation is linear, it can be
extended to the matrix form :

dM(t)
dt

= ∇~x~f (t,γ(t,~x)).M(t) M(0) = Id

Where each column of the M matrix corresponds to
the divergence associated to the principal coordinate
axis. This equation is called the variational equation
of the flow. The variational equation describes in
some sense a linear dynamical system “tangent” to
the original one. Let U t(t)Σ(t)V (t) = M(t) be the
singular value decomposition of M(t). The Lyapunov
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Fig. 5. Time evolution of a reference trajectory and a perturbed
trajectory

exponents are mean values of the logarithms of the
diagonal elements of Σ(t):

κ(s) =− 1
T

∫ T

0
log(Σii(t))dt ∀Σii(t)≤ 1

When Lyapunov exponents are high, the trajectory
of a point under the action of the dynamical system
is very sensitive to initial conditions (or to the param-
eters on which the vector field may depend), so that,
situation in the future is unpredictable.On the other
hand, small values of the Lyapunov exponents mean
that the future is highly predictable (expected to be
comfortable for a controller).The Lyapunov exponent
measures the distance between two trajectories. See
figure 5).

So, the Lyapunov exponent map determines the area
where the underlying dynamical system is organized.
It identifies the places where the relative distances
between aircraft do not change with time (low real
value) and the ones where such distance change a lot
(high real value).

Those Lyapunov exponent values can be computed
with Runge Kutta algorithm. It adds all te deviation
until the last time step. This total sum is equal to
the Lyapunov exponent. This value describes the
potential workload to the air traffic controller.

Graphical Processing Unit (GPU)

Parallel Compuation

A parallel computing platform and programming
model CUDA was used for computing complexity.

CUDA programming is used to solve problems that
can be expressed as data parallel computations. Ap-
plications that must process big data sets can use this
model to speed up computations. Our goal for this
project was to distribute data across threads in the
way that each thread working on a part of the data. A
sequential implementation of algorithm was not fast
enough if complexity values for larger problems. For
example, if complexity values for the whole country
must be computed. A parallel complexity computation
algorithm is proposed instead of preceding sequen-
tial algorithm. Complexity is evaluated on points
evenly spaced on a spatial grid. This velocity field
is used to computed Lyapunov exponent values for
each grid point. Since velocity field computation and
Lyapunov exponent computation was time-consuming
with sequential computation, we had to find way to
parallelize this part of computation program. Velocity
field values computation can be parallelized because
previous implementation consisted of many nested
loops. Those loops were unrolled because there are
not dependencies between different iterations of loops.
Velocity field values must be computed for many
points of airspace simultaneously also.

Parallel Computation Patterns

There exists many patterns that can be used for
parallelizing serial computation. Reduce pattern was
used for improving computation time[9]. Reduce pat-
tern can be uses if there exists a set of completely
independent operation. It combines all the elements
in a collection into a single element using some asso-
ciative combiner operator. The usefulness of reduce is
easy to understand. The serial implementation of serial
addition. Four variables are added sequentially.See
Figure 6 One simple example is summation, which
shows up frequently in mathematical computations.
In the reduce pattern, a combine function is used
to combine all the elements of a collection pairwise
and create a summary value. It is assumed that pair
of elements can be combine in different orders.See
Figure 7

Paralllel implementation

Velocity Field Computation



Fig. 6. Serial implementation

Fig. 7. Tree implementation

Lyapunov exponent values are used to computed
complexity metrics. It can be computed only if we
know gradient values that describe velocity field in
the airspace.See figure Those gradient values can be
computed from the velocity field values that were
found at the previous step. Gradient matrices are
needed for each grid point in the airspace. For each
time step the grid gradient values must be computed.

The same computation must be repeated for each
time step. Those gradient values must be used for
Lyapunov exponent computation. It is used as input
values for Runge Kutta algorithm that The airspace
for the big problem could be divided into millions of
evenly distributed grid points. So, we have to compute
those gradient matrices for millions of times. For
parallel solution nested loops can be again unrolled.
There are no dependencies between gradient matrices.

Runge Kutta Computation

Lyapunov exponents provide a quantitative measure
of the divergence or convergence of nearby trajectories
for a dynamical system. Runge-Kutta algorithm can be
used to compute Lyapunov exponent value for each
grid point. Runge-Kutta algorithm can be executed in
parallel for each point in the airspace because there are
different gradient values for each grid point. The result
of the Runge-Kutta function is the value that describes
the complexity of the airspace at the point where it
was computed. Previously described steps must be
repeated for each time step because the complexity
of the airspace changes frequently. Complexities for
different time steps can be computed simultaneously
because those velocities fields are independent. Pre-
viously described computed can be divided into four
parts.

If the GPU does not have enough data the com-
putation time could be even slower than with single
threaded CPU.This is the reason why parallel com-
putation algorithm must be designed carefully. The
matrix A and the vector B that were part of the
Equation 1 are computed for each time step. For this
computation Intel MKL library is used. These values
are computed only once at each time step. The GPU
computation is not needed for this part the Intel MKL
provided fast enough computation time.

Those A and B describe the traffic situation at that
time step. Those values can be used for computed
velocity field valued at each point in the airspace. If
only linear model is used then those values are not
precise enough. All the situations cannot be described
with A and B. That is reason why the non linear
extension is used. This gives more precise results.
This computation is function of the number of aircraft
square.
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Results

Air traffic data from the French airsapce was used
for the complexity computation. A GeForce GTX 660
GPU Ti with Compute Capability 3.0 was used for
computation. The radar data was used for comput-
ing Lyapunov Exponents. The radar data describes
trajectories after the conflicts between aircraft were
solved. It does not give real complexity values. The
complexity values are much lower. The trajectory
projections were used for more precise complexity
results. See Figure 8. The parallel computation of
Lyapunov exponents provided remarkable speed up
of computation. See Table I. First column describes
number of grid points where Lyapunov exponents
were computed. Second column gives information
about Lyapunov exponents computation with CPU.
The third column describes the computation time with
GPU.If the complexity is analysed for the French
airspace then the complexity is computed at 200000
points. The complexity of air traffic can be used
for measuring the workload. Red color indicates the
higher complexity of air traffic and higher workload
for air traffic controllers. See figure 9. If the com-
plexity of the air traffic is not so high then air traffic
controller could accept more aircraft. See Figure 10.
There is not red color on the complexity map that
represent high complexity of air traffic. Lyapunov
exponent values can be divided into two groups: high
and low Lyapunov expoenent values. High Lyapunov
exponents represent high sensitivity to initial condi-
tions:
• The future is highly unpredictable
• The traffic has low organization
• Represent high rate of change of relative dis-

tances
Low Lyapunov exponents represent low sensitivity

to initial conditions:
• The traffic is highly predictable future
• The traffic is organized
• Relative distances has low rate of change
The air traffic complexity was computed also for the

ATCC in Reims. The computed complexity was com-
pared with number of air traffic controllers who work
at ATCC in Reims. The red line describes normalized

complexity of traffic. Correlation between two lines
can be seen. When the complexity of the ATCC is
increasing then the number of Air Traffic Controllers
who work is increasing also. IF the complexity is not
so high then the number of controllers who work is
also decreasing.

Number of
gridpoints

Computation time
on CPU [s]

Computation time
on GPU [s]

50000 11,0 0,15
100000 23,0 0,31
300000 68,0 0,73

TABLE I
LYAPUNOV EXPONENT COMPUTATION COMPARISON

Conclusion

This paper presented a method for dynamical sys-
tems based complexity computation. The number of
aircraft that are in the airspace will increase in the
future. We have evaluate how many aircraft can be
controlled by one controller. If the complexity is
estimated only as a number of aircraft in the sec-
tor then it may not describe the situation precisely.
Air Traffic Controllers may sometimes accept more
aircraft because the structure of traffic is different.
So, if we know geometric features of traffic then
Air Traffic Controllers may accept more aircraft. This
metric can be used for analysing the pattern of air
traffic. This complexity is computed at each grid point.
The computation is implemented on GPU to reduce
the computation time The complexity computation
is implemented in CUDA language on the GPU. It
improved the computation time because the algorithm
consists of similar computation pattern for million of
times. This way this complexity metric can be used
for real air traffic problems.
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