Skip to Main content Skip to Navigation
Journal articles

Autonomous orbit determination via Kalman filtering of gravity gradients

Abstract : Spaceborne gravity gradients are proposed in this paper to provide autonomous orbit determination capabilities for near Earth satellites. The gravity gradients contain useful position information which can be extracted by matching the observations with a precise gravity model. The extended Kalman filter is investigated as the principal estimator. The stochastic model of orbital motion, the measurement equation and the model configuration are discussed for the filter design. An augmented state filter is also developed to deal with unknown significant measurement biases. Simulations are conducted to analyze the effects of initial errors, data-sampling periods, orbital heights, attitude and gradiometer noise levels, and measurement biases. Results show that the filter performs well with additive white noise observation errors. Degraded observability for the along-track position is found for the augmented state filter. Real flight data from the GOCE satellite are used to test the algorithm. Radial and cross-track position errors of less than 100 m have been achieved.
Document type :
Journal articles
Complete list of metadata

Cited literature [23 references]  Display  Hide  Download
Contributor : Laurence Porte Connect in order to contact the contributor
Submitted on : Tuesday, March 29, 2016 - 2:34:26 PM
Last modification on : Tuesday, October 19, 2021 - 11:02:47 AM
Long-term archiving on: : Monday, November 14, 2016 - 8:00:58 AM


Autonomous Orbit Determination...
Files produced by the author(s)




Xiucong Sun, Pei Chen,, Christophe Macabiau, Chao Han,. Autonomous orbit determination via Kalman filtering of gravity gradients. IEEE Transactions on Aerospace and Electronic Systems, Institute of Electrical and Electronics Engineers, 2016, 52 (5), pp 2436-2451. ⟨10.1109/TAES.2016.150387⟩. ⟨hal-01294564⟩



Record views


Files downloads