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Figure 1: Examples of space-time cube operations, performed on a generalized space-time cube to describe visualizations.

Abstract

We present thgeneralized space-time cutaedescriptive model for visualizations of temporal data. Visualizations

are described as operations on the cube, which transform the cube's 3D shape into readable 2D visualizations.
Operations include: extracting subparts of the cube, attening it across space or time, or transforming the cube's
geometry and content. We introduce a taxonomy of elementary space-time cube operations and explain how these
operations can be combined and parameterized. The generalized space-time cube has two properties: a) it is
purely conceptual without the need to be implemented, and b) it applies to all datasets that can be represented in
two dimensions plus time (e.g., geo-spatial, videos, networks, multivariate data). The proper choice of space-time
cube operations depends on many factors, e.g., density or sparsity of a cube, hence we propose a characterization
of structures within space-time cubes, which allows us to discuss strengths and limitations of operations. We nally
review interactive systems that support multiple operations, allowing a user to customize his view on the data. With
this framework, we hope to facilitate the description, criticism and comparison of temporal data visualizations, as
well as encourage the exploration of new techniques and systems. This article is an extension 6#4BDA

Categories and Subject Descript¢aecording to ACM CCS) H.5.0 [Information Systems]: Information Interfaces
and Presentation—General

1. Introduction miliar charts have an agreed-upon name, esigrall multi-

plesor scatter plotsand this tradition has been continued in
infovis, where each newly published visualization technique
is given a different name. Many textbooks and surveys list
existing techniques by their name, both for general visual-

izations [Har99] and for temporal visualizations [AMST11].
Previous work on novel visualizations for temporal data

has dramatically advanced the eld of information visual-
ization (Infovis). However, there are so many different tech-
nigues today that it has become hard for both researchers amﬂ
designers to get a clear pictureipfvhat has been dona)

how to compare and chose visualizations, gijichow much

of the design space of temporal data visualizations remains
to be explored. For similar reasons, teaching this research
topic to students is challenging. Therefore, there is a clear
need to structure and organize previous work in the area of
temporal data visualization.

Temporal datasets are ubiquitous but notoriously hard to vi-
sualize, especially rich datasets that involve more than one
dimension in addition to time, such as videos, dynamic net-
works, multivariate and geo-spatial data.

While names are essential for indexing, retrieval and com-
unication purposes, they are a poor thinking tool. Because
ere is no convention for naming techniques, names rarely
re ect the essential concepts behind a technique. For ex-
ample, names such &alue Flow MapgAA04] and Plan-
ning PolygongSRdJ05] say little about the possible concep-
tual similarities between the two techniques (see Figure 2).
Names can also be ambiguous. For example, the $email
multiplesis commonly used to refer to a speci ¢ type of tem-
poral data visualization [Tuf86]. But Figure 3 shows that two
Part of the problem is that information visualization re- visualizations can be based on small multiples despite being
searchers have mostly focused momenclature Most fa- different with respect to which aspect of the data they show.
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2 B. Bach et al. / Generalized Space-Time Cube

result of a similar (compound) operation organeralized
space-time cube and which we cadpeated drilling Figure

3 shows two techniques with the same name (“small multi-
ples”) but resulting from very different space-time cube op-
erations; Figure 3(a) involves operations suchl@sing,

time atteningandspace shiftingwhile Figure 3(b) is the
result of a compound operation we céihe juxtaposing

By discussing such relations, we hope to improve our un-
derstanding of which visualizations are complementary and
which ones are possible, but have not yet been realized in vi-

Figure 2: Two conceptually similar temporal visualization ~ Sualization. Eventually, we discuss how multiple operations
techniques Showing: (a) the evolution of crime statistics per can be combined into an interactive and consistent interface.

state; (b) the evolution of high school population per district. Our article is targeted towards designers and researchers, in
particular students in both domains.

L

(a) Value ow diagram [AA04] (b) Planning Polygons [SRdJO05]
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Figure 4: A space-time cube based on an illustration by
Hagerstrand [H0] in 1970, showing social interactions
across space and time.

Figure 3: Two visualizations using small multiples to show
the same indicator data for 4 countries over 6 years, but
which are conceptually different.

) . The termspace-time cuberiginates from social geog-
Recent effort at proposing taxonomies, conceptual mod- anpy \where it refers to a 3-dimensional Euclidean space,
els, and design spaces for temporal visualizations mainly ¢,nsisting of a 2-dimensional geographical space plus time.
categorize visualizations based on analytical tasks or data jnder the term “time geography”, Torsten Hagerstrand in

types (e.g.,, object movement data [AAHLL, AAHL 1970 described “space-time model which could help us to
AA12], video data [BCD 12], or datasets with different tem- develop a kind of socio economic web model70, p. 10].

poral and spatial structures [AMN07]). While descriptions  is intention was to analyze people's behaviour and interac-
of visualization techniques by tasks and data types can help jons across space and time (Figure 4); a moving person on a
choosing a visualization technique for a speci ¢ problem, 5 man hecomes a static 3D trajectory visualized in a space-

we aim_to describe visualizations in their own visualizatio_n_ time cube. Since then, the space-time cube has been used as
space, independent from data and task. We contend that itis 5 \isyajization metaphor in a number of interactive visual-

limitative to reason in a task- and data-agnostic manner, and ;,4¢ion systems in geo-visualization [CCI9, Kra03], video

thgt this i_s uncommon ir_l visualization (which emphasizes \;q\,alization [FLMOO], networks [BPF14b], and art [CI05].
point designs, point studies and cookbook-type recommen- o ever, it has never been used as a conceptual model for

re ecting on visualizing temporal data in general.

dations), but because it is rare enough, it is worth trying.

Our goal is to understand a) how those visualizations re-
late conceptually, b) to provide a clear terminology, and ¢) a
way of organizing these visualizations that can serve as a ba-
sis for prescriptive and evaluative work. In other words, our
framework is mostlydescriptive but, as we show, it can help
better understand the strengths and weaknesses of differen
visualizations with respect to tasks and data, and better for-
mulate research questions in empirical studies.

The bene t of a clear and detailed descriptive framework
is that it helps connect techniques that are similar and dis-
tinguish techniques that are dissimilar. For example, the two Figure 5: Khronos projector [CI05] lets users dig into video
techniques from Figure 2 have different names but are the cubes: here, a scene transitioning from day to night.
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With respect to the traditional understanding of a per while remaining legible. We show how such operations
space-time cube—a 3D representation of geographic spaceare enough to capture most known techniques for visualizing
plus time—here, we de ne ageneralized space-time temporal datasets. We mainly consider datasets that involve
cube, inspired by Furnas notion of generalized sheye two dimensions plustime, although we later discuss how our
views [Fur86]. The generalized space-time cube has the fol- model can be extended to higher dimensionalities. Datasets
lowing two main properties: with a single data dimension plus time magt require a
space-time cube and can be visualized with timelines and

1. A generalized space-time cube i€@nceptual repre- : P : .
visualizations for time series.

sentationthat helps to think about temporal data visualiza-

tion techniques in general. It doestimply an explicit 3D In this paper, we rst review common temporal data visu-
visualization nor a perspective projection thereof. The cube alization techniques, and explain how they can be all seen
doesnotneed to be implemented in the system, used to gen- as operations on a generalized space-time cube. We then
erate this visualization. For example, the visualizations in describe our framework in more detail by providing de ni-
Figures 2 and 3 do not show any space-time cube; they aretions of key concepts, as well as a taxonomy of elementary
purely 2D visualizations. For most of the examples in this space-time cube operations and how they can be combined
paper, we don't know the exact format of the underlying data into compound operations. Then, we explain how choos-
(1D, 3D, tables, multivariate, network). However, we imag- ing effective space-time cube operations can be motivated
ine apossibleconceptual cube which the visualization can be by the characteristics of the dataset, mostly because differ-
derived from. This does not imply how the visualization is ent datasets yield different “shapes”ianer structuresor
implemented or whether the designer was aware of any con- space-time cubes. We provide a way to characterize such in-
ceptual cube and generalized space-time cube operations. Inner structures, based on characteristics of data. We then in-
Section 6, we discuss systems that explicitly implement the formally discuss the relative bene ts and drawbacks of dif-
space-time cube and its operations. ferent space-time cube operations and brie y review empir-
ical evidence from user studies. We nally discuss interac-
tive visual exploration systems that support a range of space-
time cube operations, discuss limitations of our framework,
and suggest avenues for future work. A catalog of temporal
visualizations classi ed according to our framework can be
found atwww.spacetimecubevis.com

2. A generalized space-time culo®es not need to in-
volve geo-spatial data Many visualizations (e.g., scatter-
plots or node-link diagrams) convey abstract, non-spatial
data. Those (non-temporal) visualizations all embed data
into an abstract and 2Disualization spaceWhen data
changes over time, such as in GapMinder's animated 2D
scatterplots [Ros06], eagh animation fram_e can be CONCEP-5 - static Visualizations as Space-Time Cube Operations
tually thought of as a slice of a space-time cube. In the
model of the generalized space-time cube, “space” therefore In this section, we illustrate examples of generalized space-
refers to an abstract 2D substrate that is used to visualize time cube operations and how they can be used to describe
(non-temporal) data at a speci ¢ time. We call this space a range of commostatic visualization techniques for tem-
base planeThus, generalized space-time cubes include tra- poral data, all meant for screen or paper media. We focus on
ditional geo-spatial space-time cubes, video cubes, matrix a small but representative selection and describe operations

cubes, as well as a subset of OLAP cubes as we discuss laterinformally, often using analogies from photography and art.

Itis important to stress thatis article is not about space-
time cube visualizationgind that 3D space-time cube repre-
sentations, like the one in Figure 4, represent only a very
small subset of the visualizations we aim to cover. In the re-
mainder of this article, the terspace-time cubeefers to our
model, if not indicated otherwise.

Finally, our framework does not consider how space-time
cubes are built for a given dataset. A general heuristic is to
decide on a 2D visual representation of the data for a given
time slice, and then extrude it over time. For example, net-
works can be shown as node-link diagrams or matrices, mul-

tivariate data as scatterplots or barcharts. Such decisions ar¢

independent from the cube. We admittedly do not offer a de-
tailed framework that clari es the different ways concrete

datasets can be turned into concrete space time cubes. In-

stead, we assume that a conceptual 3D space-time cube is al
ready given and focus on how this cube can be transformed
to accommodate 2D media like computer displays and pa-
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While a generalized space-time cube may not be the only
way to describe these visualizations, and the designer may
not have thought of it in this way, we construct conceptual
space-time cubes for our examples, then apply the respective
operation(s) that describe the actual visualization. Note that,
while in Hagerstrand's original illustration the time axis is
vertical, in our illustrations time passes from left to right.

2.1. Time Cutting

!I

Time

@ @

:
)

Y

Figure 6: Thetime cuttingoperation.


www.spacetimecubevis.com
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A time cuttingoperation consists in extracting a particu- T
lar temporal snapshot from the cube to be presented to the y,
viewer. Figure 6 illustrates this operation: the left part (1)
shows the initial space-time cube and the temporal snapshot
that is being extracted, while the right part (2) shows the re-
sulting image that is presented to the viewer.

For example, consider a photographer who captures a par- r,
ticular instant of a moving scene. If the scene being viewed g “,_'
is represented as a space-time cube (i.e., all possible pictures
are piled up to form a cube), then taking a photograph is )/)

(

equivalent to applying a time cutting operation on this cube. Q
LR

In information visualization, an image produced by time ) :
cutting is typically called @&me slice But a temporal visual- 2) ()
ization rarely consists in a single time slice. As we will see Figure 9: Other examples of time attening: (a) Detail of the
in Section 3, time cutting is typically either performed mul- map of the cholera outbreak in London 1854, by Dr. John
tiple times and used in combination with other operations, or Snow. Piled bars mark the number of death per house. (b)
it is used in combination with animation and interaction. Connected scatterplot showing the relationship between in-
ation rate and unemployment in Spain from 1990 to 2000.

2.2. Time Flattening
Many maps that show temporal data can be seen as time-

@ @ attened geo-spatial space-time cubes. But the time atten-

‘ ing technique is not limited to geographical data and has
been employed in a large variety of information visualiza-

> | e tion systems as well as in static data graphics. Figure 9(b)
$ for example, shows the evolution of in ation and unemploy-

ment rate in Spain from 1990 to 2000. This diagram can be

seen as time- attened version of a space-time cube created
from a scatterplot that contains a single data point evolving
over time Spain.

Figure 7: Thetime atteningoperation.

Time attening collapses the space-time cube along its
time axis, by merging all time slices into a single 2D im-
age (Figure 7). An analogy i®ng exposure photography
which collapses several seconds, minutes or even hours of a
natural scene into a single image.

2.3. Discrete Time Flattening

One of the earliest uses of time attening is Minard's
illustration of Napoleon's march towards Moscow (Figure
8). The illustration shows on a single image the state of
Napoleon's army (position, size, key events) at different
points in time during the Russian campaign in 1812 [Tuf86].
Another early example is Dr. John Snow's map showing Figure 10: Thediscrete time atteningperation.
where deaths from cholera occurred in London in 1854 (Fig-
ure 9(a)). The map shows events from several days aggre-
gated over time.

Discrete time atteningis similar to time attening, but
instead of merging all time slices, a selection of meaningful
time slices is made before combining them (Figure 10).

An analogy for discrete time atting isnultiple expo-
sure photographywhere several photos are taken at different
times and blended into a single image. Etienne-Jules Marey
pioneered this technique in 1882 with an instrument (the
chronophotographic gun) that records 12 photos per second
on the same Im. He used it to visualize human and ani-

Figure 8: A famous example of time attening: Napoleon's ~Mal motion [Mar78]. Modern art has also employed a simi-
march to Moscow by Joseph Minard [Tufg6]. lar technique to convey movement, e.g., Marcel Duchamp's
“Nude Descending a Staircase, No. 2".
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3. Sprung mit Doppelsalto attening are shown in Figure 13: (a) a dynamic graph where

o = old links (in red) are distinguished from new links (in blue)

, or;V . [CKN 03]; (b) Chinese characters where rst strokes (in

e nohe Gescmaindighet et ¢ Lanchng wi doc black) are distinguished from later strokes (in red) [Wik13].

Sl Sprung mi el - o Minard's map (Figure 8) also makes use of a simpli ed form
Beim Aufkommen auf dem Boden wirkt auf den Kérper

as 15-fache dorseinos agentichen Gewictts. of colored time attening, since the army's forward march
and return are distinguished using two different colors.

< b,

u

Figure 11: An example of discrete time attening. For a bet-
ter infographic by Megan Jaegerman, see [Tuf]. 2.5. Time Juxtaposing

Tufte [Tuf86] comments on several examples of info-
graphics that employ discrete time attening. He calls them
sequencedOne of his famous examples is the life cycle of
the Japanese beetle [Tuf86]. Figure 11 is a sequence show-
ing a dancer's move. Discrete time attening has also been
used for summarizing videos [BDH04].

Figure 14: Thetime juxtaposingoperation.

2.4. Colored Time Flattening _Time juxtap_osingconsi_sts in (_axtracting ml_JItipI_e time
slices and placing them side-by-side or on a grid (Figure 14).

@ @ ® An analogy is Eadweard Muybridgelsiultiple camera
chronophotographyiMiuy87]. In contrast with Marey, Muy-

bridge used multiple cameras that recorded snapshots on
e P different locations on the Im. He used it for the scien-
ti ¢ study of for example horse gaits, and his pictures fa-
~ mously settled the question as to whether horses have all
four feet off the ground while trotting. Time juxtaposing
is also the base for many forms of sequential art, from an-
cient Egyptian murals and Greek vase paintings to today's

The colored time atteningoperation is similar to the comics [McC94, BKH 16].

time attening operation, but time slices are assigned a color
before being combined (Figure 12). Although this opera-
tion does not map to any photography technique we know
of, similar results could in principle be obtained by rapidly
switching color Iters during a long-exposure photography.

Time Time

Figure 12: Thecolored time atteningoperation.

Two examples of visualizations obtained by colored time

Figure 15: Time juxtaposing showing approved forest har-
vest applications across 10 years [Grell].

Time juxtaposing is often used in information visualiza-
tion to show temporal data such as time-evolving maps, tra-
jectories in space [TBC13] and dynamic graphs [LNS11,
BBL12, RM13, BPF14a, BHRDL5, BKH 16]. Figure 2.5

@) () shows forest harvest data over 11 years. In information vi-
sualization, time juxtaposing is usually referred tosasall
Figure 13: Two visualizations usingolored time attening multiples[CKN 03], although small multiples are not nec-

(@) lllustration of a dynamic graph visualization as used in  essarily built from time slices (see Figure 3(a)). Time jux-
GEvoL [CKN 03]. (b) Stroke order in Chinese characters taposing has been also widely used for video summariza-
[Wik13]; the color legends have been added. tion [TVO7].
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2.6. Space Cutting

2.7. Space Flattening

Figure 16: Thespace cuttingperation.

Space cuttingonsists in extracting a planar cut in a di-

rection perpendicular to the data plane (Figure 16). An anal-

ogy is slit-scan photographya process where a plate into

Figure 19: Thespace atteningoperation.

Space attenings similar to space cutting, but involves
attening the cube along a particular direction on the data

which a slit has been cut is inserted in front of a camera and plane instead of extracting a cut (see Figure 19).

then moved while the Im is being exposed [TGFO08]. Slit-

An example of use of space attening in infovis is the

scan photography has been used to create special effects irHistory Flow technique for visualizing document histo-

movies, artwork and photo nishes in sports.

Figure 17: Example of space cutting (right): horizontal lines
indicate train stops, vertical lines indicate times, and diago-
nal lines indicate moving trains [Mar78].

Space cutting has also been employed for visualizing tem-

poral data. In the 19th century, Marey created a visualiza-
tion of train connections between major French cities (Fig-

ries [VWDO04], illustrated in Figure 20(a). A space-time cube
would consist of the different document version piled over
time. The visualization shows the history of the article, built
by collapsing each article revision into a one-pixel column,
and then displaying all columns side-by-side. These opera-
tions are equivalent to attening the article's space-time cube
along the x data axis. Colors correspond to contributors.

@

Figure 20: Examples for space- attening. a) Edit history of

ure 17). This visualization can be described as space cutting 5 Wikipedia article [VWDO04]. b) article citations over time
on a geographical space-time cube, along the tracks connect-|sa06, AS].

ing cities while diagonal lines indicate positions of trains at
any time [Tuf86, Mar78].

Figure 18: Space cutting used to show road traf ¢ [TGFO08].

More recently, space cutting was shown to be useful for
analyzing video logs [TGF08]: Figure 18 shows a space cut
(called “tear” in the original work) extracted from a video
space-time cube, and revealing traf ¢ activity (car count,
speed and direction) on a road. The time slich & shown
to the left, together with the position of the segment ex-
tracted. The system is also able to show multiple longitudinal
slices on top of each other (i.gpace juxtaposing

Space attening has also been used for visualizing dy-
namic networks, based on node-link representations on the
base plane [FBS06, SA06, BVR1]. For example, Figure
20(b) shows a screenshot from Semantic Substrates [SA06]
where the y-axis is a 1D graph layout, and the x-axis shows
when connections are established.

2.8. Repeated Drilling

Repeated Drillings a more complex operation that consists
in extracting drilling cores from a space time cube at several
locations on the visualization plane, then rotating those cores
in-place so they face the viewer (Figure 21).

Two examples of drilling are mentioned in this article's
introduction (Figure 2). The top one shows the evolution
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Figure 21: Therepeated drillingpperation.

of crime statistics in every US state [AA04] obtained from

a geographical space-time cube containing a series of val-

over time [TSWSO05, TR09] or the movement of objects
[Kra03, GAA04]. 3D rendering has also been used to vi-
sualize dynamic networks based on node-link diagrams;
nodes become columns and links become bridges between
columns [DG04, BC0O3] (Figure 23(b)). When the layout of
the dynamic network also changes, nodes become worms
[DE02,GHWO09]. Worms also result from 2D scatterplots ex-
truded into time [MR97].

3. The Design Space of Space-Time Cube Operations

ues for each state. The bottom one shows the evolution of The previous section reviewed several common operations
high school population in several districts across three years that turn a conceptual time-space cube into a nal two-

[SRAJO5]. Although additional operations are involved (e.g.,

dimensional visualization. Examples were selected for illus-

using Silhouette graphs to encode Va'ues)' both examp|es aretration,. and the ||St iS not meant to -be eXhayStiVe. .Some Of the
conceptually based on repeated drilling. Repeated drilling Operations were rather simple (e.gme cutting, while oth-
has also been used in dynamic network visualization, for €rs were more complex (e.gepeated drilling and could be

conveying changes in edge weight [BN11] and in attribute
values [HSCW13].

2.9. 3D Rendering

Figure 22: The3D renderingoperation.

3D renderingconsists in showing a space-time cube the
way three-dimensional objects are typically displayed on 2D
media, i.e. by projecting it onto a 2D plane (Figure 22).

3D rendering is essentially a attening operation but in
contrast with time attening and space attening, it is (i)
typically done on a plane not orthogonal to the cube's princi-
pal axes; (ii) can involve a non-orthographic projection (e.g.,
perspective projection); (iii) can involve 3D shading, i.e. the
addition of light re ections and shadows.

(@) (b)

Figure 23: Two examples of 3D rendering. (a) Occurrence of
earthquakes (authors' illustration after [GAA04]), and (b) a
dynamic Network [DG04]

described as a composition of several lower-level operations.
Therefore, we provide in this section a more systematic de-
scription of the design space of space-time cube operations.

3.1. Basic Terminology

A space-time cube operatidakes a space-time object and
produces another space-time objectsgace-time objeds

a geometrical object within a space-time coordinate system
(i.e. two dimensions for the visualization space and one for
time). Possible space-time objects include: Sface-time
volumeg(of which a complete space-time cube is an exam-
ple), (ii) space-time surface@lanar and non-planar), (iii)
space-time curvegiv) points as well as (v) sets of discon-
nected volumes, surfaces, curves and points.

The ultimate goal of space-time cube operations is to
transform a space-time cube into a space-time object whose
shape is compatible with the shape of the media employed
to convey the information. By media we mean the visual-
ization's physical presentatigrnwhich is the physical object
or apparatus that makes a visualization observable to the
viewer [JD13]. In the vast majority of cases (i.e. computer
displays and paper) the media has a planar shape.

For a given media, a space-time cube operatiorois-
pleteif it takes space-time volumes as input and produces
space-time objects whose shape match the media's shape.
Otherwise, the operation incompleteit cannot be used to
produce a valid visualization from a space-time cube. Sev-
eral elementary space-time cube operations can be chained,
in which case they formompound operationé&\ compound
operation is complete if the rst operation takes space-time
volumes as input, and the last operation produces space-time
objects whose shape is compatible with the media.

3.2. A Taxonomy of Elementary Space-time cube
operations

A taxonomy of elementary space-time cube operations is

In geography, 3D rendering has been used to visual- shown in Figure 24 on the next page. The taxonomy breaks
ize events such as earthquakes (Figure 23(a)), attributesdown space-time cube operations into four main classes:
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Figure 24: Taxonomy of elementary space-time cube operations with schematic illustrations. Gray shading indicates non-
leaves. Thélime column regroups operations that are applied according to the time axis, whil§phaeecolumn regroups
operations that are applied according to the base plane.
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Extraction consists in selecting a subset of a space-time
object (e.g., extracting a line or cut from a volume),
Flattening consists in aggregating a space-time object
into a lower-dimensional space-time object (e.g., project-
ing a volume onto a surface),

Geometry transformation consists in transforming a
space-time object spatially without change of content,
Content transformation consists in changing the content
of a space-time object without affecting its geometry.

The table in Figure 24 shows how general operations
break down into more speci ¢ operations. On each of the two
columns, general operations are on the left while more spe-
ci c operations are on the right. Operations that are the most
specialized (i.e., leaves on the taxonomy tree) are shown on
a white background. Operations written in bold are those
which produce planar surfaces, i.e. can be used as nal op-
erations on screen-based and paper-based media.

We quickly review the most specialized operations (white
background), going from top to bottom on the left column,
then on the right column. We also describe the parameters
necessary to specify each space-time cube operation. Most
of the operations have already been used in infovis, others
have been added to Il gaps in the taxonomy.

Extraction:

Point extraction consists in selecting a speci ¢ point
inside a space-time volume. This operation is de ned
by a 2D position on the data plane and a time value.
Time drilling consists in extracting a line parallel with
the time axis. It is uniquely speci ed by a 2D position
on the data plane. For examptepeated drilling(Sec-

tion 2.8) uses several drilling operations.

Space drilling extracts a line perpendicular with the
time axis. It is speci ed by a 2D line and a time value.
Oblique drilling consists in extracting an arbitrarily
oriented straight line from within a space-time volume.
Planar curvilinear drilling consists in extracting a
planar 3D curve from a space-time volume. This op-
eration, as well as all operations above, is complete
for 2D media.

Non-planar curvilinear drilling consists in extract-
ing an arbitrary 3D curve from a space-time volume.
It is incomplete, and hence needs to be combined
with other operations likeattening or unfolding This
operation can be used to extract object trajectories
[KWO04, RFF 08].

Time cutting consists in extracting a planar cut from
a space-time volume in a direction orthogonal to the
time axis (see Section 2.1). It takes as parameter a time
value that de nes the cut position on the time axis. It
is a complete operation for 2D media.

Linear space cutting consists in extracting a planar
cut from a space-time volume in a direction orthogonal
to the data plane (see Section 2.6). It is also complete,
and takes as parameter a line or a segment parallel to
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the data plane that once extruded over time de nes the
cutting surface.

Oblique cutting consists in extracting a planar cut
from a space-time volume that is neither orthogonal
to the time axis, nor orthogonal to the data plane
(e.g. [FLMOO]). It takes as parameter a 3D cutting
plane.

Curvilinear space cutting is similar to linear space
cutting except the cutting surface is produced by ex-
truding a curve parallel to the data plane that is nei-
ther aline nor a segment. This operation produces non-
planar space-time surfaces that further need to be at-
tened (e.g., using 3D rendering [TS12]) or unfolded
(as in Figure 17).

Time chopping is similar to time cutting but slices
have a thickness instead of being in nitely thin. Since
it produces volumes it is not complete for 2D media,
and thus needs to be complemented with additional op-
erations. It takes as parameter a time segment that de-
nes the two cutting slabs (a slab is the in nite region
between two planes).

Linear space chopping oblique chopping and
curvilinear space choppingare similar to the previ-
ous cutting operations, with the difference that they
produce volumes with a certain thickness instead of
in nitely thin surfaces.

Flattening:

Time attening aggregates a space-time volume into
a plane orthogonal to the time axis (see Section 2.2).
This operation takes as parameters a time value, a
projection function and an aggregation function. The
projection functionmaps 3D points to points on the
plane. Examples include orthographic projection and
perspective projection. Thaggregation functiorde-
scribes how point values are combined. If values are
de ned in an RGBA color space, the function maps
vectors of RGBA colors to a single RGBA color. Ex-
amples of such functions include alpha-blending (e.g.,
averaging all colors) and overplotting (i.e. only keep-
ing the last color).

Space attening, obliqgue attening andnon-planar
attening are similar operations, but the surface on
which the volume is projected is different (see previ-
ous cutting operations as well as Sections 2.7 and 2.9
for more details).

Geometry Transformation:

Space shifting time shifting, yaw, roll and pitch
consist in moving or rotating space-time objects. They
can be used, e.g., for placing multiple cuts side-by-
side or for rotating an entire space time cube rendered
in 3D (e.g. [KW04,CCT99, BPF14h]).

Time scaling and space scalingrescale space-time
objects along their principal axes. They take as param-
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eters one and two scalar values respectively, that de ne 3.3. Adaptive and Semantic Operations
the scaling factor.

Bending deforms space-time objects. For example, a
space-time volume can be bent such that the time axis
follows an arc instead of a line [DCO03]. This operation
takes as parameter a deformation function that maps
3D locations to 3D locations.

Unfolding transforms a non-planar space-time surface
into a planar space-time surface. An analogy is a map
projection function that transforms a sphere or portion
of sphere into a plane. An example of space-time un-
folding is Maray's train schedule (Figure 17), which
can be seen as an unfolded curvilinear space cut per-
formed on a time-evolving 2D map.

So far we mostly described operations that are agnostic
to the data and the content of the cubelaptive opera-
tions take into account the shape or content of the partic-
ular space-time objects they operate on. For example, an
adaptive time cuttingoperation can be used to cut cubes
according to regions with large changes instead of cutting
them into regularly-spaced slices. This technique is used,
for example, in adaptive video fast-forward [PIJHO5] and to
highlight states and repetition in dynamic networks, using a
technique called “Small MultiPiles” [BHRDL5](time chop-
ping + space shiftinyy Similarly, an unfolding operation that
works on any surface (as opposed to, e.g., only spheres),
would be aradaptive unfoldingperation.

Content Transformation: Semantic operationsake into account the data seman-

tics of the space-time objects they operate on. One exam-
ple would be aemantic volume interpolatiarperation that
connects discrete sets of moving objects with lines or tubes
(see Figures 9(b) and 23(b), as well as [Ros06, BPF14a]).
This type of operation is semantic because it needs to know
the identity of the objects to be able to match them on suc-
cessive time slicegime labelingoperations such as the one
used in Figure 9(b) are also semantic, because they need to
know the location of datapoints of interest to place the la-
bels appropriatelyFiltering, aggregation and bundling can
also be seen as semantic operatiasswell as aldifference
coloring and space coloringVWDO04, RFF 08, BPF14b].
Finally, semantic operations can also be used to cut or
chop cubes according in regular distances (e.g., hours, days,
weeks). Flattening such time chops changes the temporal
granularity of the cube.

Time coloring consists in altering the colors of each
time slice according to time. Examples include col-
oring each time slice uniformly according to a linear
color scale (Figure 13), changing the hue of each time
slice, or dividing the time axis in different regions and
applying a discrete color scale (Figure 8).

Space coloringalters the color of points in a space-
time volume depending on their 2D position on the
data plane.

Difference coloring consists in altering the colors
of each time slice according to the difference be-
tween time slices. One example is highlighting ap-
pearing nodes and disappearing nodes in a dynamic
graph [RM13,BPF14a].

Time labeling consists in adding time labels to each
time slice or to objects inside a space-time volume
(Figure 9(h)).

Stabilizing consists in repositioning objects on each 3.4. Compound Operations
data plane so that their trajectories are as par-
allel as possible to the time axis. Examples in-
clude computing stable layouts for dynamic net-
works [AP12a], dynamic maps [HKV12], and stabi-
lizing videos [BGPS07].

Bundling consists in repositioning objects on each
data plane in order to bring their trajectories closer to
each other. One example is bundling air plane routes
[HEF 13].

Shading consists in altering the color of a space- A compound operation inherits the parameters of its sub-
time volume's content by simulating light propagation ~ operations. For example discrete time atteningoperation
mechanisms (e.g., diffusion, specular re ection, drop is speci ed by a sequence of time values, as well as a pro-
shadows). jection function and an aggregation function. But in prac-
Filtering consists in removing parts of a space-time tice, most compound operations enforce constraints between
volume's content. One example is removing all points  their parameters. For example, sflace scalingom atime

of a certain color or value [CCP9, DC03, BPF14b]. juxtaposingoperation are typically the same. Possibly those
Aggregation replaces multiple space-time objects by ~parameters could even result from a function. For example
a single, larger space-time object. Different methods distance between individual time cuts indéscrete time-
exist. For example, 3D kernel density estimation trans-  attening could follow a logarithmic distribution, to give
forms a set of space-time points or space-time curves more importance to recent time steps.

into 3D volumes or 2D (iso) surfaces [DV10].

We previously de neccompound operationss several oper-
ations applied in sequence. According to our taxonomy from
Figure 24, some of the operations we introduced in Section
2 are elementary, nameliyne cuttingtime attening space
attening. Others are compound and can be broken down as
indicated in Table 1. In our notation, the symbotefers to a
composition, the symbol refers to operations applied mul-
tiple times and the symbols [ ] refer to optional operations.

Many elaborate temporal data visualization techniques
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can be described as compound operations. For example, the3.5. Dynamic Operations
“Visits” technique (Figure 25(a)) shows the history of a per-
son's travels usingemantic (time chopping + space chop-
ping + time attening + space shifting)*The conceptual
space-time cube captures the location of the person in the en-
tire world over a period of time. Each circle in Figure 25(a)

is atime- attenedsegment from this space-time cube. Each
segment has also bespace-choppetb show only a portion

of the entire world. Time- attened segments are tséifted

on the data plane to distinguish them visually and to re ect e refer toanimationas the process of applying different
the temporal order in which the regions have been visited. opera’[ions ona Space_time cube over time’ or sim”arly’ vary-

A further example of a compound operation is shown in Ing the parameters of an operation over time.

Figure 25(b). The technique is similar to that of Figure 3(a)  The most common form of animation consists in changing
and shows one connected scatterplot per country, visualiz- o position of a cutting operation over time, ianimated

ing infant mortality vs. life expectance over time. While the  tjme cutting This results in the space-time cube content be-
original article [RFF08] calls this technique “Small mul- ing “played back”. For example, if the space-time cube rep-
tiples”, our framework would describe it as the following  yesents a visual scene like video surveillance data, synchro-
compound operatior(Itering + interpolation + time at- nizing the motion of the slice with a clock will result in a
tening + space shifting)*That means, the initial space-time  (g5|-time playback of the original scene. When signi cant
cube consists of a 2D scatterplot containing all countries, gaig is skipped during playback, the animation is closer to a
and time as third dimension. For each country, the technique giscrete time juxtaposingperation, except slices are shown

extracts all the corresponding points, interpolates between sequence instead of being laid out side-by-side.
them, attens them across time, and nally juxtaposes the ) ) _ )
resulting space-time surfaces. An animated time cutting operation can be preceded by a

ling operation in order to produce smooth animated tran-
sitions. Many examples exist in the literature, for exam-
ple when animating dynamic networks [ATMEL, RM13,
BPF14a] or scatterplots [Ros06, RFF8]. Most of these ex-
amples can be described ssmantic volume interpolation

+ animated time cuttingperations. Animated time cutting
can also be combined with other space-time cube operations
such agime attening For example, Gapminder can com-
bine scatterplot animations with static trails for points of in-
terest (altering + time attening operation) [Ros06].

So far we only considered operations (both elementary and
compound) that transform a space-time cube into a static vi-
sual representation. On computer displays, operations can
also be applied in a dynamic manner. Dynamic operations
can involve either animation or interaction.

3.5.1. Animation

@

While many animation techniques can be described as an-
imated time cutting omstatic space-time cubes, more elabo-
rate techniques require operations to be applied in real-time.
®) For example, Hurter et al.'s system [HEE3] usesanimated

time choppindo animate a network over time while preserv-
Figure 25: Examp|es for Compound Operations: (a) in Vis- |ng temporal context information. At eVery animation frame,

its [TBC13] (b) in a study by Robertonson et al. [RFTS] atime atteningis applied that produces colored trails and
a dynamicbundling operation is applied that guarantees a

continuous animation without jumping bundles [HET12].

Compound Operation | Elementary Operations Althoughanimated time cuttingnd its many variants are

Discrete time aftening| time cutting* + time_attening the most common forms of animation, other animated op-

Colored time attening | time coloring +time attening erations exist. For examplanimated 3D renderingan ex-

Time juxtaposing (time cutting + space scaling +space  j4in g transition between two space-time cube operations

Marey's schedule zzlrf\tllilri]gt)ea:;giefitri]:gg+ yaw + un- toauser by smothIy rota.ting a S.pace-t‘i me cube representa-
folding tion [BPF14b]. 1_'h|s technlq_ue will be c_;llscu_sse_d in Section

Sittears (Tnear/curvilnear space cuting + O+ Where we review space-time cube visualization systems.
yaw + [unfolding] + space shifting)*

Repeated drilling (time drilling + time scaling + yaw)* 3.5.2. Interaction

3D rendering [shading] + oblique attening

Interactionis similar to animation, except the changes in the
Table 1: Example compound operations decomposed.  space-time cube operations are under the user's control.
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Consideranimated time cuttingf the position of the cut-
ting plane is controlled by the user (e.g., by dragging a
slider) instead of being automatically moved, then the op-
eration becomeiteractive time cuttingA common imple-
mentation of interactive time cutting is the seeker bar on a
video player. As with animations, any operation can be made
interactive. Examples of interactive operations abound, and
we will review some of them in the next section.

Another example of interaction isnteractive curvi-
linear space-cutting + oblique atteningTominski and
Schulz [TS12] allow user to draw a curve onto a map, then
show the curvilinear space cut in a perspective projection.

4. The Inner Structure of Space-Time Cubes

So far, we mostly considered the generalized space-time
cube as monolithic entity and operations were de ned on

the entire cube. However, two space-time cubes can look
quite different (see Figures 23, 29, 30, 32, 33), depend-
ing on the characteristics of the data being visualized; mi-

gration of animals, earthquakes, changes in vegetation, dy-
namic networks, surveillance videos, or scatterplots evolv-

ing over time. Such differences de ne how the space-time

cube “looks”, and which we refer to as itser structure

On the other hand, different data sets can result in sim-
ilar inner structures. For example networks in the form of
node-link diagrams, and multivariate data visualized as scat-
terplots over time, both yield structures similar to the rst
row in Figure 26. The inner structure of a space-time cube is

B. Bach et al. / Generalized Space-Time Cube

Figure 26: Different inner structures for a space-time cube.

obtained by isolating bush res [CCD9]. Alternatively, op-
tical ow can be extracted from a video, which would yield

a structure more similar t@. Conversely, any animated vi-
sualization could be turned into a video and yield a structure
similar to ®. These are all different ways of looking at a
space-time cube. Ideally, however, the focus should not be
on the speci ¢ decomposition used, but rather on the overall
properties of the inner structure.

4.2. Dimensions of Inner Structures

Figure 26 only shows eight possible examples of inner struc-
tures, but many more structures are possible. For example,
moving objects can also change color or shape over time, or
disappear and reappear, and this would yield different struc-
tures than the ones shown on the Figure. Four dimensions

an important factor when choosing between space-time cube are however enough to capture the most important properties

operations and is independent of the speci c type of data.
This allows for a general discussion about the advantages
and disadvantages of an operation, as well as to transfer vi-
sualization techniques between domains.

4.1. Decomposing Space-Time Cubes

of inner structures, namelglensity variability in positions
variability in visual attributesandobject lifespan

Density: The density of a space-time cube refers to how
much non-empty space it contains. The inner structure of
a space-time cube can ense(Figure 26(DR®B®) or
sparse(Figure 26(@@@)®). Datasets like videos (Figure

We assume that any space-time cube can be subdivided into26 (&®) produce inner structures that are maximally dense,

lower-level space-time objects (see Section 3.1). A common
example is a set of 3D curves or tubes generated by mov-

and which will be referred to asomplete Furthermore, a
space-time cube can bpatially denséuttemporally sparse

ing objects such as cars, persons, nodes in a network, or(e.g., a few photo snapshots), or vice versa (e.g., a GPS log

points in a scatterplot (see Figure @). These curves can
yield different patterns depending on the d@&@3)@. An-
other typical structure is obtained from dense matrix data

such as videos or dynamic heatmap visualizations. For these

datasets, the object of interest (e.g., a pixel) is xed in space
but its color changes over time. The space-time objects are
therefore multicolored lines parallel with the time axis and
with no intervening spac&). Again, different patterns of
variation are possibi®.

A space-time cube can be subdivided in different ways.
For example, pixels with an alpha channel can yield higher-
level space-time objects with intervening spad@scould
be obtained by Itering a pixel-based landscape visualiza-
tion according to the type of vegetation whi® could be

over several days). Density is a key property of inner struc-
tures, and it is the only dimension that is independent from
the decomposition used.

Variability in positions : This dimension describes the
amount of motion that 2D objects undergo in the space-time
cube, which in turn affects the shape of the 3D space-time
objects that make up its inner structure. For example, case
@ in Figure 26 (which could be moving people) involves
rather straight curves, while ca§® (which could be ani-
mal movements) involves spaghetti-like curves. Matrix data
(case$d) to (@) yield zero variability in positions, since pix-
els are xed and space-time objects are lines parallel with
the time axis. Using an optical ow decomposition, c&8e
would exhibit more variability in positions than ca&
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Variability in visual attributes : This dimension refers to techniques to leverage the strengths and overcome the draw-
the amount of changes (color and shape) that 2D objects un- backs of space-time cube operations.
dergo in the space-time cube. For example the pixe®)in
and® undergo changes in color, with a higher variability in
®. In contrast, the moving objects @ to @ have a xed
shape and color, and therefore the cube's inner structure ex-
hibits no variability in visual attributes. In a multivariate net-
work [KPW13] setting, this variation could exist, e.g., the
objects were moving taxis and their color or size (e.g., ra-
dius) encoded the number of customers they carry. @se
which involves blobs moving over time (e.g., a spreading
bush re), yields high variability while cas@) does not.

Strengths and weaknesses of operations are directly re-
lated to user tasks, since certain operations yield visualiza-
tions that may better suit a certain task. So far, only few user
studies compare space-time cube operations but will be used
to ground our discussion. However, only a small subset of
all possible operations have been covered by user studies;
many of the existing ndings are hard to generalize beyond
the domain, type of data, and operation parameters used in
the stimuli. Thanks to the ability of our framework to reduce
complex techniques into elementary operations, useful ad-

Obiject lifespan: Object lifespan refers to how long 2D vice can often be provided based on more general knowledge
space-time objects persist on average, which has an in u- on visual perception and on common sense. With respect to
ence on the portion of the time axis covered by the 3D space- data type, the inner structure of a space-time cube can in
time objects. The lifespan is maximum when all objects span many cases inform the suitability of certain operations. For
the entire time axis (Figure Z® to @®). Regular matrix data example, if a dataset produces maximally dense space-time
also yields a maximum lifespan (Figure & and(@®). In cubes, a 3D representation will always be problematic unless
contrast, objects can re ect events that have a start and an other operations ( ltering, cutting) are used.
end:(® involves short object lifespans where@sinvolves
relatively long object lifespans. Events without duration pro-
duce the shortest possible lifespans, and yield inner struc-
tures consisting of points. Since objects do not persist, there 3D rendering ([shading] + oblique attening)s the oper-
is no variability in positions or visual attributes. ation most commonly associated with the space-time cube
concept, so it seems necessary to start with a cautionary
note. 3D visualizations are known to pose major dif culties
to users and are overall not recommended [Shn03, Mun15].
Dif culties include (i) occlusion,(ii) depth ambiguity(iii)
perspective distortior{iv) color distortion andv) navigation
dif culties, further discussed belov@D renderingcan how-
ever be useful for providing a general overview of a space-
time cube's inner structure (density, variability and object
lifespan). Itis also the most effective approach when the goal

Thereby, it does not matter whether the initial data is dis- IS to have observers explicitly think in terms of a space-time
crete or continuous in time or space. Discrete and continuous Cube, as it is the case for most diagrams in this article.
are two complementary aspects, both encompassed by the
generalized space-time cube. For exampipeated (time
chopping+ time attening can transform a continuous time
dimension into a discrete time dimension. On the other hand,
time interpolationcan yield a continuous impression of oth-
erwise discrete data.

5.1. 3D Rendering

The inner structure of any space-time cube can be de-
scribed along the four previous dimensions. For example,
the earthquake cube in Figure 23(a) is relatively sparse and
has minimal object lifespan. The dynamic network cube in
Figure 23(b) is also relatively sparse, but has various lifes-
pans (long for nodes and minimal for links). Also, nodes are
columns that exhibit no variability in position but a high vari-
ability in visual attributes (color).

In the next section we will see why a dataset's characteris-
tics matter, and how the inner structure of a space-time cube

can be altered with space-time operations.
Figure 27: A time-evolving network rendered in 3D with

translucency [BCO3].

5. Which Operations Work Best? Lo .
Occlusion issues are due to the use ddittening opera-

So far we essentially focused on the descriptive function of tion together with amverplottingaggregation function (i.e.
our framework: the different types of operations, how they near objects are drawn on top of far objects). The amount
can be combined or made dynamic, and the inner structure of occlusion depends on trgensityof the inner structure

of space-time cubes. We now have all the elements to discuss(see Figure 27). Therefor8D renderingis mostly adapted
practical strengths and weaknesses of space-time cube operto sparsestructures, as in Figure 23. Additional space-time
ations. This aims to support the choice of operations when cube operations can however be employed for visualizing
designing visualizations, to researching novel visualization dense(and sometimesompletg structures. An effective
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technigue involves sparsifying the cube's structure uging
teractive Itering [CFC 96, BPF14b]. A related approach
involves the use ofranslucency Iteringor more gener-
ally, translucent space-time objects (Figure 26). However,
translucency produces visual clutter without fully address-
ing the problem of occlusion, and we found few instances
of this technique yielding legible results. Also, occlusion is
an important depth cue [WFG92] that is mostly lost when
translucency is employed. For similar reasons, we recom-

mend against making the whole space-time cube translucent

— or equivalently, using aalpha blendingaggregation func-
tion. Elaborate interactive operations exist that can decom-
pose a space-time cube usiegractionandrigid transfor-
mationoperations, and allow users to look inside [CCF96].

In cases where space-time objects are densily clustered
around certain areas with the space-time calggyregation
can help reducing visual complexity and occlusion. In order
to avoid rigid objects inside the cube, clusters of space-time
cube objects can be estimated through transparency [DV10].

The attening operation is further responsible for caus-
ing depth ambiguity. On Figure 23(a) for example, it is im-
possible to extract the spatio-temporal coordinates of the
points. In the real world, most depth ambiguities are re-
solved through stereoscopic vision and structure from mo-
tion [Tod04, WFG92]. Structure from motion is as powerful
as stereoscopic vision [Tod04], and this is w8y render-
ing is the most effective when the space-time cube is allowed
to rotate througlanimatedor interactive 3D renderingin-
cidentally, being able to “look behind” space-time objects
also mitigates occlusion problems. When interaction cannot
be used (e.g., on paper media), static depth cues are crucial
One approach for structures with no or very leariability
in positionsis to have space-time objects “touch” the ground.
This is already the case for structures with maximaoin
ject lifespanssuch as in Figure 23(b). For shatject lifes-
panslike in Figure 23(a), it is advised to either add lines
connecting objects to the ground [KWO04] or add drop shad-
ows [WFG92, TKBO07] by applying ahadingoperation with
perpendicular lighting.

Perspective distortion is due to the use gbexspective
projection function: far objects appear smaller than near ob-
jects, making it dif cult to accurately compare sizes and
lengths. This issue can be eliminated with the use afrém+
graphic projection function instead. However, doing so will
eliminate an important depth cue and may produce depth
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the oblique attening operation having too many degrees
of freedom. One way to facilitate navigation is to add con-
straints, i.e. only let users manipul@&P renderingsn ways
that are essential to their task [S®3, Shn03].

Generally speaking, space-time cubes are a convenient
conceptual tool for thinking about temporal visualizations,
but explicitly showing them usin@D renderingposes a
number of problems and should be done only when neces-
sary (e.g, for showing an overview or for explanatory pur-
poses). Computer screens and paper are 2D media, and are
optimized for 2D visualizations [Shn03]. As we have already
seen, many 2D solutions exist to show temporal data.

5.2. Time Flattening

Time attening (Figure 7) can be seen as a 2D technique,
or as a speci ¢ form oBD renderingwhere ambiguities are
purposeful and animation or interaction are not necessary to
make sense of the datéime atteningessentially turns a
space-time cube into a spatial visualization: each point on
the resulting image shows the history of this point aggre-
gated over time. As a result, spatial relationships and trends
are preserved and are clearly visible, such as the path of
Napoleon's army in Figure 8 or the distribution of data val-
ues in Figure 9(b). Any aggregation function can be used,
e.g., alpha-blending for showing averages, or more elaborate
techniques for showing cumulative statistics (Figure 9(a)).

The major drawback ofime atteningis that it reduces
the time axis to a point (Figure 7), so most temporal infor-
mation is lost, including the ordering of events, temporal in-

tervals, and absolute timestamps. However, part of this in-

formation can sometimes be cognitively reconstructed from
object trajectories. For example, when reading Napoleon's
march (Figure 8), one knows that an army does not jump
between random locations but progresses smoothly, so not
all orderings of events are plausible. Knowing that an army
generally shrinks in size is then enough to infer its direction
of motion: eastward then westward. The assumption of mo-
tion smoothness also helps to read the infographics of Fig-
ure 11: the ice skater either progresses from left to right, or
from right to left. Basic knowledge about how a human body
moves then suf ces to entirely reconstruct the direction of
motion and the ordering of events.

For attened trajectories to be legible and informative, the
space-time cube needs to ggatially sparsewith long ob-

reversals analogous to the necker cube illusion [WFG92]. jectlifespansand exhibit a reasonable amountafiability

Again, this type of ambiguity can be alleviated by the use of
other depth cues such as occlusion, contactstyadliing

Color distortion is a side-effect of trghadingoperation,
since it alters the color of the space-time objects. This is not
a problem when color is not encoding information or when
simple color scales are used as in Figure 23(b), but could be

an issue when numerical data is encoded through brightness.

Navigation dif culties with 3D visualizations are due to

in positionsand invisual attributes A space-time cube can
sometimes be processed to meet these criteria. For example,
time coloring(Figure 13) is a way of addingariability in vi-

sual attributes This operation has the additional advantage
of explicitly encoding time. However, color is a poor visual
attribute since the human visual system cannot discriminate
between many colors [CAS05], and no color scale exists that
naturally maps to time. For example, red in Figure 13(a) rep-
resents old events, while it represents new events in Figure
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13(b). If time intervals (or object speeds) are more important based on different criteria and strongly in uence the overall
than absolute times, a more effective approach is to change readability of the visualization, as well as emphasize partic-
the color or shape of objects at regular time intervals. ular patterns [vdEHBVW13].

Additional operations can be applied to a space-time cube
in order to reintroduce missing time information. For ex- 5.4. Time Cutting
ample, the Phillips curve in Figure 9(b) ussmmantic vol-
ume interpolatiorio connect points and show their ordering.
Both Figure 9(b) and Figure 8 (for the army's return trip)
employtime labellingto explicitly convey event timestamps.

So far we covered different types dattening techniques.
These techniques essentially aggregate the data in a space-
time cube and are helpful for overview tasks, but fail at pro-
viding details. We now turn textractiontechniques. Among
Discrete time attening(time cutting* + time attening these techniquesime cuttingis by far the most common. A
is a variant that can also clearly expose time intervals and single time cut provides a clean and fully detailed snapshot
object speeds. Since this technique can result in loss of in- of a particular time stamp. It can potentially Il the entire
formation, it works best for structures that asparse in screen and show many details, and is furthermore free of us-
time The way time cuts are selected is important. Equidis- ing any additional visual variable for time (e.g. color, bright-
tant cuts generally expose relative times, durations, and ratesness). A simplegime labelingof the time cut can be enough.
of change. When not all cuts are equally informative, non-
equidistant cuts may be preferred, but at the cost of loosing
most of this temporal information. If cuts are chosen so that
objects do not overlap, these objects become clearly visible.
This technique is used in Figure 11 to expose the skater's
posture, an information that helps to read the visualization.

However, since the goal of a temporal visualization is to
show information across time, more than one time cut must
be shown. We already mentiondiscrete time atteningas
a possible approach, although it still suffers from the draw-
backs of aggregation. Two aggregation-free alternatives are
time juxtaposingndanimated time cutting/NVe review them

In summaryfime atteningis an operation that produces  separately, then discuss empirical research comparing both.
easy-to-interpret visualizations: space simply maps to space.

It is useful for showing data patterns aggregated over time . ]

and where space is more important than time. But since it 9-5. Time Juxtaposing

collapses the time axis into a point, it is most powerful when 10 juxtaposing{time cutting + space scaling + space

it can leverage humans' ability to reconstruct time from tra- shifting}* + time attening) allows to show different time
jectories. This often requires the use of additional space-time gjices simultaneously. Due to our exposure to sequential art,
cube operations and a very careful visual design. it produces familiar visualizations, that are easy to interpret.
Usually, space shiftindollows the occidental convention of

. laying out time slices either linearly from left to right, or on
5-3. Space Flattening 2D from left to right then top to bottom [McC94].
Space attening(Figure 19) is another form obrthogo-

nal attening that avoids some of the drawbacks of regular
3D rendering The orthogonal projection function creates a
meaningful spatial encoding, since one axis maps to time
while the other axis maps to space. The resulting visualiza-
tion can be read as a regular timeline.

The main advantage ¢iime juxtaposingver attening is
the legibility of individual time slices due to the absence of
occlusion. However, thepace scalingperation also has the
effect of shrinking time slices: the more slices are shown, the
less space — and therefore resolution — every slice has. The
time juxtaposingperation therefore requires nding the best

Space attenings effective when both time and space are trade-off between spatial and temporal resolution.
important, but one dimension of space is more informative
than the other. This is the case for edit patterns in Wikipedia
articles (Figure 20(a)). This technique is also useful for fo-
cusing on one data dimension at a time, when the two data
axes have clearly different roles (e.g., in a 2D scatterplot).
However, it produces visualizations that are generally less
easy to interpret if the base plane does not have a natural co-
ordinates system (e.g., in a node-link diagram or on a map).

A potentially serious drawback tifne juxtaposings that
time slices use inconsistent spatial coordinate systems, due
to the space shiftingoperation. This can make it dif cult
to relate moving objects across time slices and reconstruct-
ing their trajectories. However, if objects on a time slice
can be visually distinguished and have a consistent appear-
ance across time (i.e. lovariability in visual attributesand
in positiong, relating time slices becomes easier. With few
Other cases require a linear ordering of data elements objects and pre-attentive visual encodings [War12], relating
along the single remaining spatial dimension, in order to slices can be effortless. If there are many objects in each
avoid occlusion. Such a linear ordering can be obtained by time slice and/or high variability in positions and visual at-
unfoldingas in Marey's train schedule (Figure 17). In net- tributes, tasks may still require visual search and split atten-
works, a linear ordering of nodes can help reduce visual clut- tion. However, this effort can be alleviated through interac-
ter caused by edge crossings. An ordering can be de ned tion by adding brushing and linking support [BC87].
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Figure 28: Territory of later Yugoslavia (red line).

Time juxtaposings analogous taliscrete time attening

B. Bach et al. / Generalized Space-Time Cube

extremely high temporal density and aggregation (e.g., in the
form of time attening) may be preferable.

One major drawback of animated time cutting is that time
slices must be presented in a prede ned (typically chrono-
logical) order. As a result, the user must rely on memory
in order to fully understand the data [Mun15]. Since time
slices are not shown simultaneously, they cannot be freely
accessed [TMBO02]. This makes it dif cult to carry out many
types of exploratory tasks, such as comparing two non-

except time slices are laid out next to each other instead of successive slices, or examining a slice in context with other
being blended into a single image. As a result, the technique Slices. Annotations are also impossible. These are serious

yields similar bene ts compared to a regutane attening
One is that it is able to expose the temporal information that
is otherwise lost by aggregation, including event ordering,

issues that can be partly alleviated by usimigractive time
slicinginstead ofanimated time slicingnd allow to animate
between non-adjacent time cuts [BPF14a]. But these tech-

time intervals, speeds and absolute time stamps. But again,Niques do not preclude the use of memorization. Also, both
this assumes that objects can be easily related across slices@nimatedand interactive time slicingusually requires dy-

which can be dif cult when slices do not share the same co-
ordinates system.

Like with discrete time atteningthe proper choice of
time slices is crucial withime juxtaposingwith the differ-

namic displays (though on can think of physical ipbooks),
whereas all previous methods are compatible with actual
static media such as newspapers.

Neverthelessanimated time cuttingan be very effective

ence that granularity also affects spatial resolution. Again, at revealing changes between successive slices, as our vi-
equidistant cuts are better at preserving temporal informa- sual system is equipped for pre-attentively detecting in-place
tion. But when not all cuts are equally informative, non- changes [Bar97]. It can reveal subtle visual changes that are
equidistant cuts (i.esemantic time cuttifgmay be pre- hard or impossible to detect otherwise [WBO05, GMH],
ferred. For example, when showing changes in territory, his- as well as large and drastic visual changes. Our perceptual
torical atlases and newspapers often employ this technique ability to detect and interpret changes, however, requires the
to emphasize different periods and historical events (Figure absence of visual disturbances (e.g., icker) between time

28). Individual dates typically need to be added (iree la-
belling) to reintroduce the missing time information.

5.6. Animated Time Cutting

A popular way of exploitingtime cuttingis throughani-
mated time cuttingThis approach inherits the bene ts of
time cuttingcompared toattening in that there is no aggre-

slices of interest [Ren02], and ideally, that successive time
slices are similar enough to be visually integrated and per-
ceived as a motion [FTO6]. This means tregiability in po-
sitionsshould not be too high as to produce large discontinu-
ities. If it is the casetime interpolationor volume interpola-

tion need to be used to produce smooth animated transitions.
Changes can also be highlighted (e.g., througfifference
coloring operation [APP10, RM13, BPF14a]) in order to fa-

gation. Therefore, individual time slices can be seen clearly, cilitate their detection and interpretation.

without occlusion. In additionanimated time cuttings

probably the most “natural” and easiest to interpret among

all possible techniques, since space maps to space and time o
maps to time. Animations can also be visually appealing and 5.7 Stabilization

users can nd them engaging.

In contrast withtime juxtaposinganimated time cutting

The stabilizationoperation can be used to complement sev-
eral of the previously seen approaches. Whiterpolation

does not suffer from the reduced spatial resolution due to allows to produce smooth transitions between prede ned

space scalingeach time slice can span the entire screen.
Also, many time slices can be shown in a short period of
time (e.g., 60 in only one second on a 60Hz display). How-

time slices,stabilizationallows to reducevariability in po-
sitionswhen positions do not encode data. Although it may
reduce the legibility of trajectories when usitime atten-

ever, fast animations are not necessarily easy to comprehend.ing, this technique may facilitate object tracking taskain

If a space-time cube's structure ismporally densde.g.,

a long surveillance video), an animation can take time to
be perceived and understood [TMBO02]. As with previous
techniguessemantic time cuttingan be used to speed up

the playback when not all time cuts are equally informa-
tive [PJHO5]. Nevertheless, like time juxtaposing, the tech-
nigue may not be suitable for conveying information with

imated time cuttingand object mapping tasks time juxta-
posing Itis mostly used in dynamic graph drawing. The goal
of dynamic graph drawing is to compute optimal layouts for
time-evolving networks by either partially stabilizing nodes,
or by computing a xed global layout (Figure 23(b)). The
underlying motivation is to allow users to maintain a spatial
“mental map” of the data [ELMS, MELS95, AP13].
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5.8. Empirical Evidence al. [KK12] conduced a participatory design session with ex-
perts in geography. Experts reported teadingand map-
ping data attributes to trajectory thickness cluttered the vi-

dsualization. Instead, they requirspace coloringin order
to better distinguish peopldime atteningwas generally
perceived too overloaded. However, experts further reported
that3D rendering “helps in earlier stages of the research to
get some hints about the data”

There has been a considerable amount of literature in infor-
mation visualization, cartography and educational psychol-
ogy about the respective merits and weaknesses of animate
vs. static representations [TMBO02]. The scienti ¢ debate es-
sentially opposeime juxtaposingvith interactive time cut-
ting. Other studies, mostly from the domain of geo-spatial
visualization, comparetime attening with 3D rendering
and sometimes witanimated time cutting Willems et al. [WvdWvW11] comparedon-interactive
animated time cuttingvith 3D renderingand an enhanced
version oftime attening[WvdWvWO09]. Results show that
overall, each technique was best for one task. The study
discusses many exceptions, depending on datsity and
variability in position Animated time cuttingvas reported

Overall, studies suggest thtiine juxtaposingcan be ef-
fective for many tasks as long as objects of interest can be
easily related across time slices or visually indicated through
linked highlighting. It has been shown to be faster and more
accurate thamteractive time cuttingor understanding tem- to be the least robust to kigh variability in position For

poral trends in dynamic scatterplots [RFEF]. For dynamic the number of objects, Willems et al. report t&id ren-
network analysis, it has been consistently shown to be faster deringwas least scalat;le whilenimated time cuttinger-

for a number of tasks (e.g., reading change in node de- formed best. Compariniteractive animated time cutting

grtee O’Z\Fz]gﬂb?:r)’ lvl\nthTQo rr}easurattalte dllffe?ance. mt €O time juxtaposingandaggregation (iso-surfaced) a space-
rates [  FQ11]. Thus, for mos asks, ime Juxtapos- ;o cube, Brunsdon et al. [BCHO7] came to similar results.
ing has been shown to be faster than interactive animation

with no impact on the error rate [TMB02]. The stabilization operation has also been empirically
. o ) ] ) studied. Many studies found no positive effect [PS08,
However, in speci ¢ circumstancesjteractive time cut- SP08, APP11, AP12b]. However, studies on directed

ting has been shown to bring advantages. For example, granhs [PHGO6] and recent studies on general, undirected
it yields less errors when dete_ctlng the smultgneo_us P~ graphs [GEY12,AP12a] have demonstrated bene ts on men-
pearance of nodes or edges in a network visualization, 5| map preservation. Overall, stabilization can help for a
although it is slower [APP11]JAnimated time cuttinds number of tasks, but further study is needed.

very effective for highlighting subsets of data against a

similarly looking background. Ware and Bobrow [WB05] Overall, previous empirical studies paint a complex pic-
demonstrate this quite convincingly for highlighting sub- ture, and several controversies such as static vs. fflnlmated
graphs in a large graph, and Griffeet al. nd that it and 2D vs. 3D are far from being settled. Many studies em-

helps identify moving clusters against a background with phasize task as a main source of trade-off. But most likely,
identical colors [GMHO06]. In both cases, animation was the respective advantages of different approaches also heav-
both more accurate and faster. There is also some evidencelly depend on the inner structure of space-time cubes and on
that participants use both spatial and motion information the Speci ¢ space-time cube operations being used. For ex-
when memorizing animated network sequences, suggesting@MPle, eémploying smooth transitions (&mterpolation op-

that animation can help with the memorization of dynamic €ration) and giving subjects control over animatioimse(-

data [AP12b]. Thusinteractive time cuttingand animated active time cuttiny can have a huge impact on the effec-
time cuttingseem useful for highlighting data subsets (us- tiveness of animations. Also, different datasets may produce
ing motion) and for representing a small number of dynamic widely differentinner structuresand dramatically in uence
changes. Short animations, consisting of just 2-3 time steps, the ef cacy of techniques. By clarifying these differences
may be useful for clarifying drastic reorientations in the @nd providing a terminology to describe them, we hope that
visual representation of the data [TMBO02]. There is some our framework will help design more informative user stud-
evidence to support this nding in the context of dynamic €S and eventually settle ongoing debates.

graphs where the stability of the drawing is low and impor-

tant nodes in the task cannot be highlighted throughout the 5.9. Other operations

time series [AP16]. We discussed the bene ts and drawbacks of space-time cube

Concerning the ef ciency 08D rendering results are also operations commonly used for visualizing temporal data.
mixed. On a data set of four people moving through space, As suggested by our framework (the elementary operation

Kristensson et al. [KDA09] found thatime atteningwith taxonomy in Figure 24 and the different ways to combine
space coloring(each person had an individual color) per- them), a possibly in nite variety of operations exist and it
formed better for simple tasks th&D renderingwith shad- is impossible to analyze them all. It is likely that among all

ing. However, the latter was found to better support more possible operations — especially the least constrained ones
complex overview tasks. Investigating similar techniques but such asobliqueandnon-planaroperations — the vast major-
on a much larger data set (203 trajectories), Kveladze et ity will be harder to read and to interpret. Popular approaches

submitted to COMPUTER GRAPHICBorum(3/2016).



18 B. Bach et al. / Generalized Space-Time Cube

are particular in that they mostly involve orthogonal oper-
ations, especially along the time axis (itene attening
andtime cutting. One striking exception i8D rendering
which combines several complex operations to emulate how
we perceive solid objects in the real world (e.g., rotation,
perspective projection, shading) and produces familiar (but
sometimes illegible) images.

Itis however also likely that the immense design space of
space-time cube operations contains techniques that need to
be learned, but can yield unique bene ts for speci ¢ tempo-
ral data analysis tasks that usefully complement standard ap-
proaches. Some of these have already been discovered (see, (@) 3D rendering (b) Space attening (on top)
e.g., Figures 2,5, 2.5, 17, 18, 20(a), 31). The exciting possi-
bility that the design space contains a number other “pearls”
to be discovered stresses the importance of research in novelg 2. Tardis
temporal visualization techniques. By discussing the multi-
ple trade-offs involved in known techniques and explaining
how these trade-offs originate from the intrinsic properties
of elementary operations, we hope that our framework will
be able to guide designers and accelerate future discoveries.
Another promising line of work consists in supporting mul-
tiple space-time cube operations, and is discussed next.

Figure 29: lllustration after GeoTime [geo]

Tardis [CCT 99, CFC 96] is a system for visualizing envi-
ronmental data usingD renderingin combination with ad-
vanced space-time cube operations. The voxels in the cube
are color-coded depending on the type of vegetation, its age,
soil characteristics or the presence of bush res (Figure 30).

6. Space-Time Cube Systems

Choosing an appropriate space-time cube operation depends
on many factors and almost always involves tradeoffs. In
this section we review a representative sample of visualiza-
tion systems that address this issue by supporting multiple
space-time cube operations. Those systems almost invari-
ably use3D renderingas an explicit representation of the

space time cube, both for showing an overview and for ex- (a) 3D rendering with mul- (b) 3D rendering with multiple
plaining how different operations relate. Operations are im- tiple time and space cutting volume extraction+translation
plemented on the visual model of the cube. We call these

systemsspace-time cube systerasd the traditional under- ~ Figure 30: Tardis [CCT 99] and visual access [CF®6]

standing of_space-time_ cube in geo-visualization is in fagt Tardis implementsnteractive semantic Itering users
a geographical space-tlme_ cube system._ Because Spa(fe't'm%an, e.g., select a particular type of vegetation or a range of
cube systems work by letting people switch between differ- vegetation ages. In addition, Tardis suppanteractive or-

gnt qperatlons and tune their parametiatgractionandan- thogonal cuttingbut in contrast with our previous examples,
imationare central features. cutting is always used in combination wiD rendering
Users can de ne and manipulate multiple orthogonal cut-
6.1. GeoTime ting planes (Figure 30(a)). Further operations include open-
ing the cube like a bookirfteractive (volume extraction +
GeoTime is a carefully-designed commercial system for an- rotation)*) or apply a 3D sheye effectifteractive (volume
alyzing spatio-temporal data [geo, KWO04]. Events are shown extraction + translatiof*), pushing away voxels from the

as spheres on @D renderingview that can be freely ro- cursor (“Visual Access Distortion”, Figure 30(b)).
tated (Figure 29(a)). This view also uses a reference plane,

and asemantic volume interpolatiomperation is applied to i
indicate event ordering. Users can perfotime chopping 6.3. VISUAL-TImePACTS

operations by dragging on a timeline widget. GeoTime also VISUAL-TimePAcTS is a system for analyzing activity di-
supportstime attening and space attening Figure 29(a) aries [VFC10]. It uses non-geographical space-time cubes.
shows aspace atteningview where time runs from top to  The cube's two data axes can be mapped to data dimensions
bottom, and a reference plane is provided that can be rotated.such as individuals, locations, or activities. We focus on the
Thin gray lines connect the two views. Finally, pan & zoom case where one axis maps to individuals while the other axis
is supported throughpace chopping + space scaling maps to activities. Activities are also encoded using color.
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@) (b) © Figure 32: Different operations applied to a time-evolving
adjacency matrix in Cubix [BPF14b]

space cuttingtime atteningandspace attening For at-
tening operations, cells can be made translucent to visually
aggregate the history of connections. Cubix also supgerts
mantic Itering on connections based on their weight.

Cubix provides a control widget in the form of a stylized
cube, and whose different parts can be clicked or dragged
Figure 31: VISUAL TimePAcTS [VFC10]. (a) Space Flat- to switch between operations. All operation switches are ex-
tening on activities, (b) Oblique attening, (c) Space atten- plained using animated transitions through rotations of the
ing on individuals. 3D renderingrepresentation, or through staged animations
of extractionandrigid transformationoperations.

(d) Shearing explained (e) The result of shearing

. . . 6.5. Video Cube Systems
VISUAL-TimePACTS supporttinear space atteningon

both data axes. Figure 31(a) shows 6 individuals (horizontal

axis) and their activities (colors) across time (vertical axis).

Figure 31(c) shows the evolution of activities aggregated

across all people over time. VISUAL-TimePACTS supports

a seamless transition between the two operations thrimagh

teractive 3D renderingFigure 31(c)). Since 3D rendering

employs orthographic projection and no shading, it is essen-

tially anoblique atteningoperation. (a) (b)

VISUAL-TimePACTS supports a more elaborate space- Figure 33: (a) Video Cubism [FLMOO]; (b)\? [DCO3].
time cube operation that prevents visual marks from overlap- '

ping due toattening. In Figure 31(c), for example, individ- Several space-time cube systems have been proposed to
uals are horizontally offset when several of them do the same Support video analysis [MB98, FLM0O, DC03, CI05]. Video
activity at the same time. This technique is called shearing Cubism [FLMOO] uses &8D renderingrepresentation to-

by the authors, and is further explained in Figures 31(d), gether with arinteractive volume extractionperation that

31(e). This technique is essentiallylmear space cutting IS de ned by manipulating a planar cutting plane (Figure
+ space shifting)* + space atteningperation, and isahy-  33(a)). Similary, Khronos projector [CI05] supports manip-
brid betweerspace juxtaposingndspace attening ulation of a non-planar cutting plane using touch or mid-air

gestures (Figure 5)/3 [DCO03] (Volume Visualization for

Videos) supports different operations, includimge juxta-
6.4. Cubix posingand a3D renderingview that can be combined with a
bendingoperation (Figure 33(b))/3 also supportdtering
operations that allow removal of pixels of a certain color, or
pixels that do not change across a given time period.

Cubix is a system for analyzing dynamic weighted networks
through adjacency matrix representations [BPF14bBDA
renderingprovides an overview of the data (Figure 32(a)).
Time goes from left to right. Each cell of the cube represents
a connection between two nodes at a given time, with size 6.6. Wakame
depending on connection weight. Cells can be color-coded

according to time, weight, or direction. Wakame [FW10] is a system for visualizing multivariate

data by extruding starplots along a time dimension. The base
Cubix supports a range of space-time cube operations, in- plane of the space-time cube lays out starplots by their ge-

cluding time juxtaposingFigure 32(b)),space juxtaposing ographical location, although any layout could be imagined

(detail in Figure 32(d))animated time cutting animated (Figure 34(a)). Colors correspond to dimension in the data.
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is transformed and mapped onto visual variables in a visual-
ization. Space-time cube operations, on the other hand, are
purely conceptual and do not imply any direct implemen-
tation; a slice from a cube could be seen as a data object, a
graphical object, something in-between, or something blend-
ing the two. Our model rather turns a 3D conceptual space
into a 2D visualization space, regardless of how the visual-
) ) ) ization is eventually implemented on the infovis pipeline.
(a) Oblique attening (b) Space attening
Figure 34: Wakame [FW10] _ In fact, some space_-tim_e opere_ltions can be performed at
different stages of the infovis pipeline, for examgime at-
teningcan be done at theata transformatiorstage, by ag-
gregating raw data over time. Alternatively, it could be em-
ulated by explicitly rendering a 3D space-time cube on the
screen and using a proper camera placement and projection
transformation. In that case, it would be implemented at the
renderinglevel. Frame buffers objects are another example
as they can store data, while running on the GPU [MEO09].
Both models, the infovis pipeline and the generalized space-
time cube, are complementary.

Wakame supports 3 operatiomdalique attening(Figure
34(a)),time attening (Figure 34(b)), andime cutting In
oblique attening, extruded starplots can be rendered as tra-
ditional timeline charts as shown in Figure 34(b). The sys-
tem provides an animated transition to the time- attening
where those timeline charts are shown aligned and in 2D.
For time-cutting, the user selects a single time point on the
complementary timeline and the system moves the camera
orthogonal to the base plane.

Finally, the infovis pipeline is aeneralmodel for vi-

Besides the space-time cube systems reviewed in this sec- L - .
sualizations, where the sequence of operationsed, but

tion, there is a wealth of general 3D visualization systems. .
Commercial and research tools exist in domains such as geo-the ppergtlops Fhemselves are rathbstract For exa.mple,
visualization (e.g., Voxler [Vox], ArcGIS [arc]), scienti ¢ vi- the infovis plpe_llne n_10de| provn_jes no speci c_detalls about
sualization (e.g., VTK [SAHO0], Matlab [maf] and R [f]), what happens in theisual mapplng_ransfo_rmatlo_n. In con-
and medical visualization [MTBO03]. Although these tools do trast, our model qnly gapt.ureSp.eu ¢ family of wsuahzg- .
not treat time as a speci ¢ dimension, they can be used to in- tions (temporal visualizations), its sequence of operations is

spire the design of interactive space-time cube systems. n_ot >_<ed,_ a“‘?' the operations are moce_ncrete The info-
vis pipeline is more general but too high-level to capture

the similarities and differences between the visualizations
7. General Discussion we presented. On the other hand, our model is incomplete

We now discuss the limitations of our descriptive framework in that it does not de ne how the space-time cube is built.

and consider areas for future research, including: unifying To fully support a variety of space-time cube operations
our framework with the infovis pipeline model, extending it on the same dataset, the generalized space-time cube must be
to other dimensionalities, discussing OLAP-cubes, consider- implemented as a rst-class object, as done in many space-
ing non-planar media (e.g. physical visualizations), as well time cube systems (Section 6). Thus space-time cube op-
as discussing user tasks. erations are best seen peesentation mappingr render-

ing transformations, i.e., transformations that turn the ab-
stract visual form into a fully-speci ed 2D image or 3D
model [JD13]. In other terms, our space-time cube opera-
Since our framework builds on the notion of sequential com-  tions can be used to decompose and re nepitesentation
position of operations, it shares similarities with another mappingtransformation of the infovis pipeline. We believe
common model: the infovis reference model, also called the that implementing our framework in this way, and poten-
infovis pipelinglCMS99, Chi00, JD13]. The infovis pipeline  tially based on abstract inner structures of space-time cubes,s
sees visualization as a data- ow process, i.e., a sequence 0Ofcould dramatically facilitate the exploration of a wide range
stages and transformations that turn raw data into a nalim- of temporal data sets.

age. These transformations commonly incluiga trans-

formation visual mapping presentation mappingnd ren-

dering [JD13]. Interactivity is implemented by having data 7.2. Other Dimensionalities

analysts alter these transformations at different stages.

7.1. Comparison with the Infovis Pipeline Model

This article focused on temporal visualizations that involve
There is clearly an analogy between transformations on two dimensions in the base plaptis time. These two di-
the infovis pipeline and operations on a space-time cube, mensions can be inherently spatial or can result from 2D
since both describe steps in creating a visualization. How- spatial encodings of non-spatial data. However, temporal vi-
ever, the infovis pipeline describes steps for itt@lemen- sualizations with other dimensionalities exist or may be re-

tation of a visualization, i.e. when and in which order data quired for speci c problems.
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Most notably, a rich variety of temporal visualizations ex-
ist that involve asingle spatial dimension plus time, e.g.,
timelines and time-series visualizations [AMST11]. In prin-
ciple, our framework still applies if the 3D space-time cube
is turned into a 2D space-time plane. Operations analogous
to our geometry transformatiommperations would capture
technigues such as spiral visualizations, calendar visualiza-
tions or cycle plots [AMST11]. However, since a 2D space-
time plane already naturally maps to a 2D planar display, and
since the richness of time-series visualizations and timelines
mostly stem from the visual encodings used, the usefulness (@) (b)
of our framework would be less clear in this case.
Figure 35: Examples of physical space-time cubes: a) Ma-
trix Cube for dynamic network [BPF14b] (made by Ben-
jamin Bach), b) Subversion commits on different research
projects over time [SSJ14].

Other temporal visualization techniques, although less
common, showthree spatial dimensions plus time. We be-
lieve most of them can be captured with operations on 4-
dimensional space-time hypercubes. For example, Tufte ex-
plains how small multiples can be used to show the evolu-
tion of a three-dimensional storm [BB95]. This approach
amounts to applying dime juxtapositionoperation on a
space-time hypercube, where eaahe cuttingoperation
yields a 3D image. Similarly, FromDaDy [HTC09] uses 3D
trails to show the trajectories of airplanes in space. This tech-
nigue amounts to performingtane atteningon a space-
time hypercube. Extending our framework to higher data di-
mensionalities is an exciting topic for future research. How-
ever, it is less easy to imagine a hypercube than a cube, so
the merits of such a conceptual model still remain to be seen. 7 4. Non-Planar Media
Another solution to explore high-dimensional temporal data

Future work could extend our framework to OLAP cubes.
This would include to i) differentiate between the two di-
mensions of the base plane, and consequently to ii) extend
the number of existing operations (e.g. enable cutting on
each of the three cube dimensions). Finally, operations cur-
rently supported by OLAP cubes should be discussed for
their general applicability to actual space-time cubes.

is to use dimensional reduction [BSH6, vdEHBVW16]. Throughout this article we assumed the presentation medium
to be planar. Although these are by far the most common,
7.3. OLAP Cubes other display shapes are being explored in HCI, some of

Related to both implementation and higher dimensionalities Which are even deformable [RPPH12,HV08]. In these cases,
of the generalized space-time cube are data cubes [G7]B the conditions for an operation to lmempleteare not the

in Online Analytical Processing (OLAP cubes). OLAP Same. This opens up a wide range of possibilities for new
cubes consist of three data dimensions, selected freely from Visualization designs. For example, one implementation of
a potentially high dimensional dataset and do not have to the Khronos projector (Figure 5) employs back projection
involve a single temporal dimension. In this sense, OLAP 0n a freely deformable cloth, allowing the usenain-planar
cubes could be seen as superset to all space-time cubescuttingoperations that areompleteln addition, physical vi-
However, OLAP cubes are unable to capture “moving” ob- sualizations make it possible to faithfully display 3D space-
jects such as animals or nodes in a network (Figuré, time cubes without any additional operations [JDF13,JD13].

@), hence representing only a subset of all space-time cubes.Many such visualizations have been already crafted by sci-
) ) entists, artists and designers [DJ13].
OLAP cubes are meant for querying and aggregating mul-

tidimensional data, rather than for visualization and explo-  Physical temporal visualizations can even be made modu-
ration. They are pure logical models, and we are not aware lar to support interactive space-time cube operations. Figure
of any visualization system that explicitly uses OLAP cubes. 35(2) shows two physical representations of a dynamic net-
Some OLAP operations indeed share striking analogies with Work [BPF14b] made of laser-cut and laser-engraved acrylic.
STC operations, nameblice (time andspace cuttiny dice The left version supports interactigiene cuttingwhile the
(spaceandtime choppiny androll-up (spaceandtime at- right version supports interactigpace cuttingCuts can be
tening. Other operations on OLAP cubes, not explicitly sup- taken apart and manipulated freely, allowing fone jux-
ported by space-time cubes, aill-down (zoominginand  taposingand space juxtaposings well astime attening
effectively being the reverse dhttening) and pivot (reas- and space attening if viewed from a proper orthogonal
signing dimensions of the cube). In supporting these opera- angle and distance. Figure 35(b) shows SVN commits over

tions, the spatial structure of the OLAP cube can vary and is time. Time goes from left to right, and different layers rep-
not persistent, as in space-time cubes. resent different projects. Slices can also be taken apart and

reordered. For another example see [STB13].
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7.5. Towards a Prescriptive Model

Our framework is mostly descriptive. A prescriptive model
in turn can help us making implications about which oper-
ations to use for which data and tasks. Unfortunately, we
need more empirical studies to assess the relative effective-
ness of different space-time cube operations with respect to
speci ¢ tasks as well as data types and characteristics. Al-
though many studies have already been conducted (as dis-
cussed before), the current body of evidence paints a com-
plex and partly inconclusive picture. This may be due to the
lack of a clear and detailed descriptive framework. A clear
descriptive framework allows us to better tease apart the ef-
fects of different subtle design features and to better control
for confounds. We showed how many temporal visualiza-
tion techniques can be decomposed into elementary opera-
tions. These operations can be combined in many ways or
made dynamic at different levels, either through animation
or interaction. The characterization of the inner structure of
space-time cubes may already provide many elements to dis-

cuss the practical strengths and weaknesses of space-time[

cube operations, mostly based on well-established knowl-
edge on perception and HCI, and on common sense.

Running studies for answering speci c research questions
will naturally remain important, and we hope our descriptive
framework will facilitate the design of such studies and the
discussion of ndings in a more informative manner, leading
to a more prescriptive framework in the future.

7.6. User Tasks

In our discussion on the advantages and drawbacks of certain
space-time cube operations, we have mostly focused on the
inner structure of the space-time cubes as a source of trade-
offs. However, the process of creating a successful visualiza-
tion also has to take into account the user's tasks. There have
been efforts at proposing task taxonomies that should com-
plement our framework (e.g. [Mac95, AAO5, Rot13, APS14,
BPF14a]). However, we do not yet see a straighforward map-
ping between operations and the tasks they support best. As
already mentioned, more effort is needed to come up with
domain-agnostic task taxonomies.

7.7. Other Limitations

Our framework is only meant to be a thinking tool. Like any
model, it is necessarily incomplete. First, our taxonomy of
elementary operations in Figure 24 is not meant to cover
all possible operations since their number is potentially in -

B. Bach et al. / Generalized Space-Time Cube

Figure 36: Energy consumption over time [VWvS99]: the
horizontal axis is mapped to days while the other one is
mapped to hours.

(see Figure 36). Also, space-time cubes may not account for
branching times. However, our framework is not meant to

restrict creativity but rather to help visualization designers

nd new solutions, extend or generalize existing ones, and

hink out of the box.

Our framework assumes that the space-time cube already
exists. It does not provide guidance for producing the space-
time cube itself, mainly because this process involves many
decisions and should not restrict the range of possible tech-
nigues. For non-spatial data, many visual mappings can be
used to produce individual slices, for example, locations on a
map can yield values for altitude, temperature, rain, vegeta-
tion and soil type. How to visualize all these attributes at any
particular point in time is a general problem of information
visualization, but the choice may also affect the ef ciency of
later space-time cube operations. We hope that future work
can clarify some of these questions.

8. Conclusion

We reviewed various techniques to visualize temporal data,
by describing them as sequences of parametric operations
applied to a conceptual space-time cube. Our operations are
independent from the underlying data and can be applied
across a range of application domains, be they cartography,
dynamic network analysis, geopolitics, or video analytics.
When choosing the appropriate operations, a designer only
needs to take into account the inner structure of the space-
time cubes generated by the data, and the users' tasks.

Furthermore, by introducing domain-agnostic concepts
and a clear terminology, this article aims at facilitating the
comparison of different approaches for visualizing tempo-
ral data. Existing visualizations from one data domain can

nite and the taxonomy can easily be extended. Second, ourbe analyzed in terms of elementary operations and then be
framework does not provide much guidance for interaction adapted to other domains and problems. By giving a bet-
design: the design space for interactive operations has only ter vision of the richness of this design space, we hope our
been partially explored in research. Finally, not all tech- model will also motivate the exploration of new approaches.

niques for visualizing temporal data can be captured with It stresses the importance of developing fully-integrated in-

space-time cubes. For example, temporal data can be vi- teractive systems and toolkits that can support a range of
sualized using two time axes instead of a single data axis technigues in a consistent manner.
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Our model further aims at facilitating the design of stud-
ies and discussing their results in a more informative as well ~ support the visualisation of dynamic graph#¥formation Sci-
as formal manner. We hope the presented terminology and ~ €nces 33Q2016), 495-509. 17
low-level concepts will help design better experiments that [A':I’D'Tf%gr]engR?nH:pM?::dgbiﬁ& %;R(;:yinﬁc%rgb’h ?Nﬁch(-;f
tease out important factors in dynamic data visualization. : ! : :
Controlled studies are needed to understand the trade-offs Graph Drawing(2010), vol. 6502, Springer, pp. 50-61. 16
between different space-time cube operations and how they [APP11] ~ARCHAMBAULT D., PURCHASEH., PINAUD B.: An-

. . imation, Small Multiples, and the Effect of Mental Map Preser-
perform depending on task, data, and the people using them.  yation in Dynamic GraphslEEE Transactions on Visualization
and Computer Graphics 14 (2011), 539-552. 17

[APS14] AHN J.-w., PLAISANT C., SHNEIDERMAN B.: A task
taxonomy for network evolution analysil=EE Transactions on
Visualization and Computer Graphics 28 (Mar. 2014), 365—
376. 22

[arc] ArcGIS. http://www.esri.com/software/arcgis
line, accessed:02-apr-2014]. 20

[AS] ARIS A., SHNEIDERMAN B.: NVSS: Network Visualiza-
tion by Semantic Substratesitp://www.cs.umd.edu/hcil/
nvss/ . [online, accessed:02-apr-2014]. 6

[ATMS 11] AHN J.-W., TAIEB-MAIMON M., SOPAN A.,
PLAISANT C., SHNEIDERMAN B.: Temporal visualization
of social network dynamics: prototypes for nation of neigh-
bors. InProc. of International Conference on Social Computing,
Behavioral-Cultural Modeling and Predictio(2011), Springer,
pp. 309-316. 11

[AP16] ARCHAMBAULT D., PURCHASEH. C.: Can animation

This work mostly arose out of the need to teach temporal
information visualization to undergrad students. We there-
fore hope that it will help other people teach this eld effec-
tively, by providing a clear structure and a clear terminology

on which to base higher-level discussions and analyses. . [on-
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