Multi-agent Systems for Air Traffic Conflicts Resolution by Local Speed Regulation
Romaric Breil, Daniel Delahaye, Laurent Lapasset, Eric Féron

To cite this version:
Romaric Breil, Daniel Delahaye, Laurent Lapasset, Eric Féron. Multi-agent Systems for Air Traffic Conflicts Resolution by Local Speed Regulation. ICRAT 2016, 7th International Conference on Research in Air Transportation, Jun 2016, Philadelphie, PA, United States. hal-01342623

HAL Id: hal-01342623
https://hal-enac.archives-ouvertes.fr/hal-01342623
Submitted on 11 Jul 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Multi-agent Systems for Air Traffic Conflicts
Resolution by Local Speed Regulation

Romaric Breil, Daniel Delahaye
Laboratory in Applied Mathematics, Computer Science
and Automatics for Air Transport
National Civil Aviation University
Toulouse, France
E-mail: breil@recherche.enac.fr

Laurent Lapasset
Capgemini Technology Services
Toulouse, France

Éric Féron
Daniel Guggenheim School of Aerospace Engineering
Georgia Institute of Technology
Atlanta, GA 30332 USA

Abstract—Air Traffic Flow Management (ATFM) aims at structuring traffic in order to reduce congestion in airspace. Congestion being linked to aircraft located at the same position at the same time, ATFM organizes traffic in the spatial dimension (e.g. route network) and/or in the time dimension (sequencing and merging in TMA, Miles-in-Trail for en-route airspace).

The objective of this paper is to develop a methodology that allows the traffic to self-organize in the time dimension when demand is high. This structure disappears when the demand diminishes.

In order to reach this goal, a multi-agent system has been developed. This algorithm regulates aircraft speed in order to reduce the number of conflicts, thus decreases overall traffic complexity, which becomes easier to manage by air traffic controllers. This algorithm was applied on realistic examples.

Air traffic management; multi-agent system; conflict resolution; speed regulation

I. INTRODUCTION

Air traffic volume has been constantly increasing during the past decades, and ICAO [1] predicts that the annual number of flights will double in 2030 in comparison to 2013. Air traffic controllers are in charge of ensuring traffic safety and fluidity by temporarily diverting flights from their original trajectory when necessary. In doing so, a minimum separation distance is maintained between all aircraft. This task is known as conflict detection and resolution. It is increasingly perceived that the present centralized way of managing traffic cannot scale up anymore. In order to deal with traffic growth, major research programs around the world, such as SESAR (Single European Sky ATM Research) and NextGen (US Next Generation Air Transportation System) consider automating some tasks previously done by controllers, allowing them to manage more flights simultaneously. In a more daring effort, decentralized flow management, whereby traffic flow management is delegated to individual aircraft, is also an option.

A. Air Traffic Management

The current air traffic system is structured [2] on a route network whose vertices are geographical positions called waypoints, through which an aircraft shall go. Each waypoint is identified by a name. Before departure, the pilot or the airline dispatcher is to submit a flight plan to the civil aviation authority, containing information related to the flight (route, departure and arrival airports, etc.). This flight route is defined by a set of waypoints identified by their names. Once airborne, however, modifications to the flight plan may be initiated by the flight crew or air traffic control, depending on local traffic and weather conditions.

The airspace of every country is usually divided into several sectors. Each sector is managed by a team of air traffic controllers in charge of trajectory planning, collision avoidance management and of communicating with aircraft. Controllers can only take charge of a limited number of flights simultaneously. Sectors and route networks are designed in such a way that controllers’ workload is reduced; they have only a limited number of flights to manage simultaneously in their sectors, each of them following a predefined route. They have to keep separation distances between each pair of aircraft above given threshold values: in cruise phase, a conflict occurs when two aircraft are separated by less than 5 nautical miles (1 NM = 1.852 km) horizontally and 1,000 feet vertically (1 ft = 30.48 cm). When a conflict is foreseen, the controller requests that one or both pilots execute a maneuver, usually temporarily changing the heading or altitude to increase separation, before returning to initial flight path.

The air traffic is constantly increasing and the current air traffic structure is reaching its maximum capacity. To cope with this situation, parts of the control process could be delegated to automatic algorithms, like conflict detection and resolution or other traffic management tasks.

Aircraft are increasingly capable of communicating full estimated 4D trajectories over the next minutes by means of
messages. These data can be transmitted by using Automatic Dependent Surveillance – Contract (ADS-C) [3, 2.2.6]. These messages are exchanged following a request-answer protocol. Usually, a ground station sends a request to a specific aircraft, which sends back a data frame containing aircraft identifier, position, speed and the predicted route composed of a set of 4D positions (3D + time). Information carried by ADS-C is more accurate than radar positioning since an aircraft uses GPS to get its position. Ground stations receiving these messages are able to provide controllers with accurate representation of air traffic. This is well adapted to airspace where radar coverage is not available (e.g. oceanic airspace).

Free flight is an air traffic management concept developed in the U.S. that enables aircraft to choose their path in low traffic zones with more freedom, by ignoring route networks. The implementation is currently studied by the NextGen research program. In Europe a similar concept was developed by the SESAR project; the Free Route Airspace is already deployed in some areas. These zones are managed or not by air traffic controllers. In the second alternative, automatic separation assurance systems would benefit from aircraft information exchange systems.

B. Algorithms Solving ATM Problems

Many studies have already been performed to design automatic conflicts resolution methods. Some are referenced in [4]. Most of those methods try to reproduce the way controllers regulate traffic by changing aircraft heading for a short period. According to air traffic controllers, those algorithms can interfere with their own decisions since the controllers and the algorithms take the same kind of decision in the same controlled areas [5].

In 2004, a new way to solve this problem was proposed as a part of the project ERASMUS (En Route Air traffic Soft Management Ultimate System). According to Villiers [5], instead of trying to reproduce what controllers are doing, those algorithms should help them by removing a part of the conflicts before they appear by slightly changing aircraft speed for instance. This type of automated system organizes traffic in order to create a favorable traffic situation, more easily managed by controllers, and not interfering with their own decisions. This concept was validated with technical experiments [6] and human factors studies [7]. The speed regulation method was implemented as a genetic algorithm.

Since problems encountered in Air Traffic Management (ATM) are highly combinatorial, deterministic optimization methods tend to become inefficient when dealing with real traffic scenarios (from hundreds to thousands of aircraft). To overcome this situation, heuristics have been used in several research works, giving approximate but good results in a time horizon compatible with operational constraints [8].

Multi-agent systems can be used to develop heuristic algorithms, and have already been applied to air traffic management problems. Some studies focus on traffic regulation in free flight (or Free Route) zones. Aircraft flying in free flight areas must automatically be able to find conflict-free trajectories, respecting the required distance separation between aircraft. This problem can be solved by multi-agent systems, such as the one that was developed by Wollkind, Valasek and Ioerger [9], or the one developed by Sislak, Volf and Pechoucek [10]. Those algorithms solve conflicts using maneuvers such as heading and flight level changes. As shown by Villiers, this regulation method can interfere with controllers’ decision process.

The algorithm described in this paper aims at implementing the traffic regulation method of the project ERASMUS as a multi-agent system. As detailed in Section I-C, this type of algorithm has several advantages compared to global optimization methods used in ERASMUS.

C. Multi-Agent Systems

Multi-agent systems have been used to solve many problems in operations research, like regulation of urban transportation networks [11], design of mechanical systems [12], or path-finding problems [13]. This paradigm is often regarded as a kind of distributed artificial intelligence. Multi-agent systems are made of autonomous agents interacting among themselves and with their environment [14]. Usually, agents have a limited perception of environment and they partially know the internal state of their neighbors, via message exchanges. Their behavior can either be simple (whereby reactive agents are only influenced by environmental changes) or complex (whereby cognitive agents try to fulfill an objective).

Self-organization is a key aspect of multi-agent systems. If the rules that direct agents are carefully chosen, a complex behavior can emerge at the system level from local interactions and behavior of agents. When multi-agent systems are used to solve operations research problems, a carefully chosen set of agent behaviors can help to find an overall solution to the problem (system level) by only using local rules (agents level).

Multi-agent systems can be implemented either within a computer simulation, or as a physical system that is composed of robots that are able to communicate and to interact with their environment. When agents are implemented within a computer simulation, computations of agents can be done in parallel, exploiting modern hardware architectures (multi-core processors, computations on graphic card). A multi-agent system can also run on a cluster of computers.

Those systems have several advantages compared to centralized decision methods. When correctly designed, they exhibit a good resilience when facing disruptive events [15]. Agents try to fulfill a goal and act in order to become closer to this objective. When they are confronted to local perturbations in their environment, they adapt their actions to take those changes into account, enabling the system to get back to a new stable state. Since decisions are decentralized at agents level, the failure of an agent will not impact the whole system. In centralized decision processes, a central regulation entity failure may prevent the system to work. In the field of information technologies, such a central point would be defined as a Single Point of Failure (SPOF).
Applied to air traffic management, the implementation of new onboard collaborative decision processes can be done progressively, whereby equipped aircraft cooperate among themselves and are given more freedom in their decisions than non-equipped aircraft (for example by constraining the latter to follow rigid corridors).

Even if current technology like ADS-C does not allow aircraft to really exchange data about trajectories directly from aircraft to aircraft, these data can be collected by ground stations. Traffic regulation algorithms like the one described in this article can then compute speed changes, which can then be sent back to real aircraft. The distributed aspect of a multi-agent approach to the management of traffic is somewhat diminished since aircraft do not take decisions themselves. Yet, other advantages are preserved, like resilience and general performances.

This article describes a conflict resolution algorithm based on aircraft speed self-regulation. This implementation of the ERASMUS concept takes benefit from the use of multi-agent systems. Section II details the algorithm. Section III describes various scenarios aiming at validating this algorithm.

II. AIRCRAFT SPEED SELF-REGULATION FOR CONFLICT RESOLUTION

A. Hypotheses

The algorithm described in this section regulates aircraft in cruise phase. Their altitude is supposed to be constant.

Each flight has a preferred cruise speed depending on general aircraft performances and airlines preferences. Airlines can give priority to reducing fuel cost by reducing aircraft speed, or to the reduction of crew costs by increasing speed, which also increases fuel consumption. This setting is adjusted by using a value called Cost Index (CI), which is the ratio of the cost of flight time (including crew costs) to the cost of fuel.

Let \(v \) be the current speed of an aircraft and \(v_{\text{opt}} \) its optimal speed. In order to be inserted into a route network, aircraft may have to choose a speed \(v \) different from \(v_{\text{opt}} \) within a given speed interval. A lower bound \(v_{\text{min}} = v_{\text{opt}} - 6\% \) will allow to insert this aircraft into a flow without dramatically increasing fuel consumption [16]. A speed interval of \([v_{\text{opt}} - 6\%, v_{\text{opt}} + 3\%]\) is a common choice for speed regulation in en route airspace [17].

The Airbus A320 and A380 are representative of the aircraft that are able to fly at 36,000 ft and above, keeping in mind that the A320 belongs to the slowest aircraft of this category, and that the A380, to the fastest (alongside the Boeing 777, for instance). In our simulation, optimal speed of aircraft are randomly chosen in the interval \([447 \text{ knots}, 487 \text{ knots}]\) \((1 \text{ kt} = 1 \text{ NM/s})\), which are the optimal speeds of an A320 [18] and an A380 [19]. Moreover, finding a solution is not guaranteed when flights are following each others — for instance in the Miles-in-Trail scenario described in Section III-A — if the maximum speed of the slowest aircraft is lower than the minimum speed of the fastest one.

Aircraft acceleration and deceleration are fixed to \(\pm 4,000 \text{ NM/h}^2 \ (\pm 0.572 \text{ m/s}^2)\) for all aircraft. The standard turn rate [20, PCG S–6] of 3°/s is used so that a complete 360° turn is done in 2 minutes.

In a general traffic situation or in free route scenarios, some conflicts cannot be solved only by using speed control, as in head-on encounters, for instance. The aim of this algorithm is to simplify the traffic by doing subliminal speed changes in order to help controllers. The algorithm reduces the number of conflicts and delegates the remaining ones to air traffic controllers.

Thus, these conflicts need additional maneuvers to be solved. In the current implementation of the algorithm, these maneuvers are not implemented: the algorithm only minimizes the number and duration of conflicts and does not try to solve all of them.

B. Algorithm

In this multi-agent system, aircraft are agents exchanging ADS-C messages containing estimated 4D trajectories. A trajectory is stored and exchanged as a sequence of arcs that can be straight segments (aircraft flying at a constant speed, accelerating, or decelerating) and arcs of circles (aircraft turning), as shown in Fig. 1. This curve is differentiable at least once everywhere.

This curve is built from a flight plan defined by a set of waypoints. An aircraft has to fly above each waypoint (Fig. 1). After an aircraft reaches a waypoint, it turns in order to head towards the next one. Speed changes are planed at given times (Section II-B2), and are applied in straight segments.

This multi-agent system (Fig. 2) is timed by a global clock. Each tick corresponds to a second in the simulation. All agents are synchronized: at the end of an iteration, agents drop off messages into the mailbox. When the next iteration begins, those messages are delivered to addressee agents. Therefore, even if agents processes are run asynchronously, agents work logically in parallel. This choice helps the overall system to avoid problems related to sequence order. For performance reasons, agents are run in parallel, using multiple threads.

During the lifecycle of an agent, a sequence of three steps is repeated at every iteration of the multi-agent system until the agent is removed. The perception step allows agents to receive ADS-C messages and refresh internal representation of airspace. During the decision step, aircraft plan speed changes
on the basis of this internal representation. In the action step, agents update their position using updated speed, and broadcast an ADS-C message.

1) Perception: Each aircraft agent first receives messages from its neighbors, from which it extracts 4D trajectories. In order to detect conflicts, the aircraft then samples other aircraft trajectories to get their predicted position every 10 seconds during 20 minutes (Fig. 3).

a) Conflicts Detection: A conflict occurs when the distance between two aircraft becomes smaller than 5 NM on a horizontal level. When an aircraft follows a path, its future positions are defined by its own current position and by its speed changes. Since speed is to be chosen during the decision phase, all potential conflicts need to be detected, regardless of its own speed. Then, for each intruder predicted position, the algorithm searches for possible intersections between its own path and a circle of 5 NM centered on the intruder predicted position (Fig. 3). Thus, whatever speed changes the aircraft will choose, it will always manage to detect conflicts.

b) Internal Representation of Own Trajectory: Since an aircraft strictly follows its path, the decision process only modifies speed. To manipulate a trajectory defined by a 4D curve is not necessary: this 4D trajectory can be simplified by using the traveled distance over the route as a function of time, by integrating the instant speed as a function of time. In other words, the aircraft trajectory can be represented as a 2D curve defined by the arc length as a function of time. This curve is then projected into a 2D space (Fig. 4).

Conflicts detected during the conflicts detection step (Section II-B1a) are also projected in this space. Each potential intrusion extracted from the sampled neighbor’s trajectory is projected according to its position along the path (Fig. 3). The portion of the path intersecting with the circle of 5 NM centered on the intruder’s position gives an interval of positions forbidden to the agent (Fig. 4).

2) Decision: Using conflicts projected in the 2D representation (displayed in Fig. 4), aircraft can plan speed changes. The goal is to avoid conflicts by way of speed changes. This goal is achieved by using a decision tree where for each time sample, the aircraft can maintain its speed, accelerate or decelerate.

A time step of 5 seconds was chosen. For each time sample, three choices are tested: cruise, acceleration or deceleration at the maximum rate (Fig. 5). Then at each time step and for each possible decision, the time of the first conflict is computed. The problem is solved using a greedy algorithm that locally maximizes the time of the first conflict.

As in the pseudo-code in Appendix A, the set of decisions D is iteratively constructed. For each time step, acceleration (acc), deceleration (dec) and cruise (cr) choices are tested: the time when the first conflict occurs is stored in the variable cflTime. Then, the algorithm looks for the decision leading to the latest conflict date. If speed constraints are respected (checked by the function isValid()), this decision is accepted.

Using a greedy algorithm makes possible to get good results (Section III) after a short period of computation. Yet, since a
Figure 5. Exploration of the decision tree. For each time step, 3 choices are tested: to accelerate, to cruise, to decelerate. The choice leading to the longest conflict-free trajectory is applied (in this case, it accelerates two times at the beginning, then it cruises).

Figure 6. The conflict is unsolvable because of the objective function that tries to maximize the delay before the first conflict; in the first time sample, all the possible choices (to accelerate, to cruise or to decelerate) lead to a conflict at $t = 20$ s. In this case, the aircraft chooses to cruise, which leads to a severe conflict lasting 40 seconds. An alternative objective function that minimizes the duration of a conflict can choose to decelerate three times in order to cause a less severe conflict lasting only 10 s (dashed segments).

greedy algorithm is only a local optimization process, it may find a local optimum and be unable to find an existing conflict-free solution, as in Fig. 6. Therefore, some conflicts cannot be solved. The choice of this method is a compromise between the computation time and the quality of the results.

Results given by the greedy algorithm can nonetheless be refined by the addition of intermediate decisions at each time step (e.g. accelerations and decelerations of $\pm 2,000$ NM/h2 and $\pm 4,000$ NM/h2), but at the cost of longer computation times.

3) Action: In the action step, the set of decisions D computed by the algorithm of Section II-B2 is used to generate the new 4D trajectory, which is communicated to neighbors using an ADS-C message.

Since all agents apply the same decision process iteratively, the system should converge to a stable state in which conflicts are solved. When aircraft follow the same route, they fly at similar speeds in order to avoid conflicts. When they follow intersecting routes, the separation distance between aircraft of each route becomes similar in order to allow them to cross alternatively the intersection point.

In order to validate the algorithm, various traffic scenarios were tested. A description of the scenarios and some results can be found in Section III.

III. Test Scenarios

A. Miles-in-Trail

In order to validate our algorithm, our first experiment is related to the management of an intersection of two Miles-in-Trail (MIT) traffic flows. Miles-in-Trail [21] is a method used by controllers to reduce air traffic complexity. When flight density increases in a given area, traffic is structured into flows of aircraft following the same path. Flights are separated by a given distance (for example 20 NM) and their speed is regulated. This manner of structuring creates queues of aircraft. Those queues are easier to perceive and to manage by controllers. Their job is then to monitor inter-aircraft spacing and to apply speed control whenever it appears to be necessary.

Miles-in-Trail also makes merging or crossing of flows easier. Aircraft must be separated by at least 5 NM, which defines the maximum aircraft density in a flow: when two flows merge, each one must apply a 10 NM Miles-in-Trail so that aircraft alternatively come from the first and the second flow. The same reasoning is applied to crossing flows (Fig. 7) where aircraft must be separated by more than 10 NM, depending on the angle between flows. The exact separation distance can be computed using the method described in [22, Lemma 1], but the algorithm detailed in this article is able to compute approximated values.

This first scenario is an attempt to reproduce the Miles-in-Trail traffic structure at the intersection of two flows. In this simulation, aircraft fly along two crossing routes (Fig. 7). They receive messages from the other agents containing planned 4D trajectories and regulate their speed to avoid conflicts.

The route network used in this simulation contains two intersecting paths defined by 5 waypoints of French airspace: the first path is composed of the waypoints LMG, MEN and MRM, and the second one by TOU, MEN and LYS. The distances between waypoints are: 116 NM for the segment LMG-MEN, 119 NM for MEN-MRM, 97 NM for TOU-MEN
and 105 NM for MEN-LYS. Aircraft are generated randomly at one of the western positions (LMG or MEN). The arrival rate of aircraft along each route follows a Poisson distribution which is considered to be a valid approximation for air traffic. The rate of aircraft along each route follows a Poisson distribution and 105 NM for MEN-LYS. Aircraft are generated randomly, existing conflict-free solution.

Thus, with regulation, not all conflicts could be solved. The decision process is a greedy algorithm that searches for a local optimum before the first conflict. This algorithm is faster than a global optimization method but is not meant to find a global optimum that would lead to an existing conflict-free solution.

When $1/\lambda = 110$ s, 74% of conflicts are solved, decreasing from 27 conflicts to 6.9. This results indicate that the algorithm becomes less efficient as the initial inter-aircraft distance approaches the maximum traffic capacity of 65 aircraft per hour. This loss of efficiency comes from the traffic generation process: the λ value is the average time between two aircraft generations. Thus, some aircraft are generated at closer positions than others. Generating two aircraft too close to each other prevents the algorithm to find a conflict-free solution.

So as to validate the resilience of the algorithm to disruptive events, a third scenario was added to each set of scenarios with 10% of non-cooperative aircraft by disabling their decision process. For the first set, with an average interval of generations of 140 s, results are similar when every aircraft is cooperative and when 10% of them are non-cooperative, with an average number of unsolved conflicts increasing from 2.3 to 2.7. As long as cooperative aircraft know the estimated trajectories of their non-cooperative neighbors, they will be able to avoid conflicts, because non-cooperative aircraft are taken into account as a constraint in the decision process of cooperative aircraft.

For the second set of scenarios, with average interval of generations of 110 s, the average number of unsolved conflicts increases from 6.9 to 10.7. In other words, the number of solved conflicts decreases from 74% to 60%. In this second scenario, aircraft are generated every 110 s, which is the maximum theoretical capacity of the routes. As previously mentioned, the aircraft generation process can produce situations where aircraft are in an unsolvable conflict as soon as they are generated. Non-cooperative aircraft can accentuate this problem. Some conflicts require that all involved aircraft cooperate to be solved, and the solution cannot be found if only one aircraft maneuvers. Moreover, some conflicts that can be avoided occur because none of the involved aircraft takes decisions.

B. Miles-in-Trail Capacity Increase with Crossing Route Topology

In order to increase the capacity at the intersections of a route network in terms of number of aircraft per hour, Yoo and Devisia [24] developed a route topology allowing to put aircraft on parallel tracks to enable them to cross the intersection. In theory, this method allows to reach the maximum capacity of each route which is one aircraft every 5 NM. As shown in Fig. 8, this topology first divides the incoming aircraft flow in three parallel tracks separated by 5 NM laterally. Aircraft then pass the intersection. Finally, the three sub-flows are merged into a single outgoing flow.

A new behavior was added to aircraft agents in Section II, as they can choose one path among three alternatives, as shown in Fig. 8. Aircraft applies the algorithm described in Section II-B2 to each choice, then selects the path leading to the longest conflict-free trajectory.

To validate this method, a new set of three scenarios was tested. Aircraft were generated according to a Poisson point process on each route, and flying during 1 hour. The average time interval was fixed to 110 seconds, as in the first set of scenarios in Section III-A. In the first scenario, the aircraft decision process was disabled. In the second, it was enabled. In

<table>
<thead>
<tr>
<th>Average time interval</th>
<th>Decision process</th>
<th>Number of aircraft</th>
<th>Conflicts</th>
<th>Solved conflicts (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>140 s</td>
<td>Disabled</td>
<td>51.2</td>
<td>16.8</td>
<td>86.3</td>
</tr>
<tr>
<td></td>
<td>Enabled</td>
<td>51.1</td>
<td>2.3</td>
<td>97.7</td>
</tr>
<tr>
<td></td>
<td>Disabled for 10%</td>
<td>51.3</td>
<td>2.7</td>
<td>97.3</td>
</tr>
<tr>
<td>110 s</td>
<td>Disabled</td>
<td>65</td>
<td>27</td>
<td>71.4</td>
</tr>
<tr>
<td></td>
<td>Enabled</td>
<td>65</td>
<td>6.9</td>
<td>93.5</td>
</tr>
<tr>
<td></td>
<td>Disabled for 10%</td>
<td>65.8</td>
<td>10.7</td>
<td>89.3</td>
</tr>
</tbody>
</table>

Table I: Performances of the algorithm for the Miles-in-Trail scenario (average values of 10 runs).
Figure 8. 3-ways route topology allowing to increase the capacity of the route network depicted in Fig. 7. Parallel routes are at a distance of 5 NM.

Table II

<table>
<thead>
<tr>
<th>Average time interval</th>
<th>Decision process</th>
<th>Number of aircraft</th>
<th>Conflicts</th>
<th>Solved conflicts (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 s</td>
<td>Disabled</td>
<td>65.2</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enabled</td>
<td>65.1</td>
<td>1.5</td>
<td>94.3</td>
</tr>
<tr>
<td></td>
<td>Disabled for 10 % of aircraft</td>
<td>64.6</td>
<td>2.9</td>
<td>89.1</td>
</tr>
</tbody>
</table>

The third, the decision process was disabled for 10 % of aircraft in order to test the resilience of the algorithm to disruptive events. Results are shown in Table II.

When the decision process is enabled, 94 % of conflicts are solved compared to when the decision process is disabled (1.5 conflicts on average are not solved when enabled, 26.5 when disabled). For the last scenario, while 10 % of aircraft do not cooperate, solved conflicts decrease to 89.1 % (2.9 remaining conflicts).

These results indicate that the capacity of a Miles-in-Trail route network can be increased using an alternative route network at the intersections. In the scenarios described in Section III-A, only 2 unsolved conflicts remain while one aircraft is generated every 140 s on average. In this scenario, this capacity is increased by 27 %, up to one aircraft every 110 s, without increasing the number of unsolved conflicts. It means that the part of the controllers’ workload caused by the number of conflicts does not increase while using the 3-ways route topology described in this section.

C. Traffic Based on Actual Flight Plans

Another set of scenarios was tested to validate the algorithm on actual flight plans of aircraft flying over France during 10 hours (from 4 AM to 2 PM), as shown in Fig. 9. Here again, the conflict resolution was disabled in the first scenario, then enabled in the second. Only the flights at 37,000 ft have been analyzed since this altitude contains the most flights, 465 in this case.

Since the route network is more complex and more dense over France than in the Miles-in-Trail network shown in Fig. 7, conflicts can be harder to solve. The small interval of admissible speeds can be insufficient to maintain separation in all circumstances. In some situations, aircraft start from positions that lead to an unsolvable conflict (see Fig. 10). Furthermore, speed regulation alone cannot solve face-to-face conflicts. Nevertheless, this algorithm is able to solve 42 % of the 444 conflicts initially present, leaving in the mean 256.5 unsolved conflicts. Results are shown in Table III.

In the third scenario the decision process is disabled for 10 % of aircraft. Then the average number of conflicts slightly increases from 256.5 to 275.9 (−4 % of solved conflicts). This value indicates that this multi-agent system is resilient to disruptions, since the cooperative agents take the non-cooperative ones into account in order to include them as constraints into the decision process.

Table III

<table>
<thead>
<tr>
<th>Decision process</th>
<th>Number of aircraft</th>
<th>Conflicts</th>
<th>Solved conflicts (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
<td>465</td>
<td>444</td>
<td></td>
</tr>
<tr>
<td>Enabled</td>
<td>465</td>
<td>256.5</td>
<td>42.2</td>
</tr>
<tr>
<td>Disabled for 10 % of aircraft</td>
<td>465</td>
<td>275.9</td>
<td>37.9</td>
</tr>
</tbody>
</table>
IV. CONCLUSION

The algorithm described in this article has several advantages related to the usage of multi-agent systems. It is able to solve up to 86% of the conflicts, is resilient to perturbations like non-cooperative agents, and could eventually be implemented on board, removing the need to rely on ground equipment.

But this algorithm is not able to solve all conflicts, and is not meant to do so. To avoid all conflicts, aircraft have to execute other types of maneuvers in addition to speed regulation, like heading changes. Nowadays, these decisions are taken by air traffic controllers and are not planned to be delegated to algorithms in human-controlled airspace.

However, some of our recent experiments indicate that allowing aircraft to delay departure time or change flight level helps the algorithm to remove all the remaining conflicts. Our next research work will aim at reducing the number of conflicts by adding new behaviors to the multi-agent system.

We will also implement a global optimization method to solve the problem described in this article. It will allow to measure the difference in terms of computation time and result optimality between results returned by this multi-agent system and by a global optimization method, often used to solve similar problems.

Thanks to the ability of multi-agent systems to integrate non-cooperative agents and to recover from disruptive events, they offer a good framework to mix human-controlled traffic with an automated one. Eventually, these algorithms could then collaborate with humans in air traffic management applications, because they work over different scales, time and space-wise.

APPENDIX

Algorithm of the Decision Process

1: choices ← {cr, acc, dec}
2: D ← {}
3: for i ← t_{0} to t_{end} step Δt do
4: bestChoice ← cr
5: bestCflTime ← i
6: for c in choices do
7: cflTime ← getFirstConflict(D ∪ {c})
8: if isValid(D ∪ {c}) & cflTime > bestCflTime then
9: bestChoice ← c
10: bestCflTime ← cflTime
end if
11: end for
12: D ← D ∪ {bestChoice}
13: end for

REFERENCES