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Abstract: In Functional Data Analysis (FDA), the underlying structure of a raw 

observation is functional and data are assumed to be sample paths from a 

single stochastic process. Functional Principal Component Analysis (FPCA) 

generalizes the standard multivariate Principal Component Analysis (PCA) to 

the infinite-dimensional case by analyzing the covariance structure of 

functional data. By approximating infinite-dimensional random functions 

by a finite number of random score vectors, FPCA appears as a dimension 

reduction technique just as in the multivariate case and cuts down the 

complexity of data. This technique offers a visual tool to assess the main 

direction in which trajectories vary, patterns of interest, clusters in the data and 

outlier detection. This method is applied to aircraft trajectories and the problem 

of registration is discussed when phase and amplitude variations are mixed. 
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ble, Karhunen-Loève Decomposition, Dimension Reduction, Registration Problem.

Introduction

Principal Component Analysis (PCA) was one of the first methods of multivariate sta-
tistical analysis to be generalized to functional data that are assumed to be drawn from
a continuous stochastic process. This point of view differs from standard statistical
approaches: the nature of observations is different as we assume that the underlying
structure of a raw observation is functional. Rather than on a sequence of individual
points or finite-dimensional vectors. In this work, we will focus on Functional Prin-
cipal Component Analysis (FPCA) which is an useful tool, providing common func-
tional components explaining the structure of individual trajectories. In Section 1, we
briefly recall the main ideas of a standard PCA approach. The general framework for
Functional Data Analysis (FDA) is presented in Section 2 and the FPCA approach
is formalized in Section 3. In Section 4, the registration problem is considered when
phase variation due to time lags and amplitude variation due to intensity differences
are mixed. Finally, FPCA is applied to aircraft trajectories that can be viewed as
functional data.

1 Multivariate Principal Component Analysis

Principal Component Analysis (PCA), proposed by Pearson [20] and developed by
Hotelling [13], is a powerful exploratory statistical method which has become a major
tool for the analysis of multivariate data. When we observe more than two numeric
variables, their variance and covariance matrices can be difficult to interpret. PCA
allows to analyze data variability by studying the structure of their covariance matrix.

The main idea of PCA relies on creating a small number of new variables, which
preserve the maximum amount of variation in the original variables and will make it
possible to synthetize the large quantity of information into an understandable form.
To illustrate this, let us suppose that we want to extract a two-dimensional represen-
tation (e.g. a picture of my cat Filou) from a three-dimensional image. What is the
best view that will better preserve the representation of the object (side view, front
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view or back view of Filou)? PCA has many advantages. Firstly, the number of these
new variables may give some indication as to the complexity of data. Next, these new
descriptors are required to be orthogonal so that they eliminate redundant informa-
tion contained in the original variables. For this reason, PCA can be seen as a tool for
compression and data reduction. Finally, PCA can also be used as an outlier detection
method.

Let X be the centered random vector of the p original variables X1, . . . , Xp. PCA
consists in looking for a linear subspace with smaller dimension on which the variance
of the projected data is maximal. Let ∆1 be the linear subspace spanned by the original
variables defined by a unit vector u1 and Y1 = 〈u1, X〉 = uT1X be the projection of X
onto ∆1. This new random variable is a linear combination of the p original variables.
The vector of weights u1 has to be chosen such that the projection Y1 onto ∆1 has a
maximal variance (also called inertia)

Var ( 〈u1, X〉 ) = uT1 Su1 subject to uT1 u1 = 1,

where S = E
[
XXT

]
represents the covariance matrix of the random vector X. The

solution of such a quadratic maximization problem is the eigenvector of S corresponding
to the largest eigenvalue λ1. We then search the unit vector u2 orthogonal to u1
such that the variance of the projected variables onto this new direction is maximal.
Similarly, this is solved by finding the eigenvector of S associated to the second largest
eigenvalue λ2.

Using a stepwise procedure, the subspace of q dimensions which we are looking for
is spanned by the weight vectors u1, . . . , uq so that each unit vector uj maximizes the
inertia of the projection Yj = 〈uj, X〉

Var ( 〈uj, X〉 ) = uTj Suj subject to 〈ui, uj〉 = δij, i ≤ j, j = 1, . . . , q.

This is solved by finding the eigenvectors of S corresponding to the non-increasing
sequence of eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λq ≥ 0. Weight vectors u1, . . . , uq are called
principal component factors and the new random variables Yj are called principal com-
ponent scores. As is noted in [25], the unit norm constraint on the weights is essential
to make the problem well-defined because the variance could be made arbitrarily large.
Moreover, the weights have to be orthogonal to those identified previously so that they
indicate something new. The amount of variation will decline stepwise and at some
point we expect to lose interest in modes of variation so that only a little number of
components will be sufficient to seek the most important modes of variation.
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Figure 1: Scores of p = 2 variables (left panel) and p = 3 variables (right panel).

As the covariance matrix S is unknown, we need to replace it by the sample co-
variance matrix

Σn =
1

n
XTX,
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where X is the centered data matrix in which columns represent the p variables and
lines represent the n individuals. The principal component score corresponding to the
ith individual projected onto the jth factor direction can be expressed as follows

cij = uTj xi, j = 1 . . . , p, i = 1, . . . , n,

where xi is the individual vector (xi1, . . . , xip)
T of the original data. We can express

the score vector cj = Xuj as a linear combination of the original variables, where uj
is reached by solving the maximization problem

max
uj∈Rp

Var ( cj ) = uTj Σnuj, subject to 〈ui, uj〉 = δij, i ≤ j, j = 1, . . . , p.

The solution is given by the eigenvector corresponding to the jth largest eigenvalue λj
of the sample covariance matrix Σn. The maximum variance is then equal to λj.

The eigenvalues λ1, . . . , λp measure the variation of the projected data onto the uj
direction, j = 1, . . . , p, and their sum is equal to the total variance of the data. Then
the cumulated ratio of variance explained by the first q principal component factors

τCq =

∑q
k=1 λk∑p
k=1 λk

measures the influence of these first q factors u1, . . . , uq, i.e. the quality of repre-
sentations onto the principal planes. Finally, the score vectors c1, . . . , cp contain the
coordinates of the orthogonal projections of the data onto the axis defined by the fac-
tors uj. Then, we can easily visualize the projected data by means of two dimensional
scatter plots of scores and interpret outliers or some groups of individuals relatively to
the principal component factors. Moreover, we may interpret the factor uj according to
the original variables by computing the linear correlation coefficients between principal
component factors and original variables.
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Figure 2: Representation of individuals (left panel) and variables (right panel) onto a
plane defined by two principal component factors.

We can reconstruct the original data from the principal component factors u1, . . . , up
by means of the following reconstitution formula

X =

p∑
i=1

cju
T
j =

p∑
i=1

√
λjzju

T
j ,

where zj and uj respectively represent the eigenvectors of the matrices 1
n
XXT and

1
n
XTX, associated to the same eigenvalue λj. We can then perform a data compression

by using the q first components, q ≤ p,

X∗ =

q∑
i=1

cju
T
j ' X =

p∑
i=1

cju
T
j .
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One of the advantages of PCA is to retain the first q terms in the above expansion
as an approximation of the original data and hence achieve dimension reduction. The
choice of the dimension q is then crucial for the quality of data compression.

To summarize, PCA is a linear factorial method. The quantity of information of the
data is synthetized by creating new descriptors (in limited number) which are uncorre-
lated linear combinations of the originally correlated variables with maximal variance.
Because the first principal components capture the maximum of the variability, PCA
can be seen as a dimension reduction technique. In addition, PCA is a powerful tool
for visualizing relations between variables and eventual groups of individuals, and for
detecting possible outliers. There are many generalizations of PCA, mainly based on
non-linear transformations of data, among others:

• Independant Component Analysis (ICA), in which components are not only or-
thogonal but independent,

• Curvilinear Component Analysis (CCA), in which we determine a subspace that
best respects the distances,

• Kernel Principal Component Analysis, in which a non-linear projection into a
high-dimensional space is followed by a standard PCA.

2 Functional Data Analysis and Random Function

Functional Data Analysis (FDA) consists in studying a sample of random functions
generated from an underlying process. This point of view differs from standard statisti-
cal approaches: the nature of observations is different as we assume that the underlying
structure of a raw observation is functional. Rather than on a sequence of individual
points or finite-dimensional vectors as in a classical approach, we focus on problems
raised by the analysis of a sample of functions (curves or images), when data are
assumed to be drawn from a continuous stochastic process X. The sample of data
consists of n functions x1(t), . . . , xn(t), t ∈ J , where J is a compact interval. Rather
than a N -dimensional vector (xi1, . . . , xiN)T as in multivariate case, we entirely observe
a function xi(t), i = 1, . . . , n. This yields a vector of functions rather than a n×N data
matrix, where each function xi consists of infinitely many values xi(t), t ∈ J . General
definitions of functional variables and functional data are given in [9] as follows.

Definition 2.1. A random variable X = {X(t), t ∈ J} is called funtional variable
(f.v.) if it takes values in an infinite dimensional space (a functional space H). An
observation x of X is called a functional datum.

Definition 2.2. A functional dataset x1, . . . , xn is the observation of n functional
variables X1, . . . , Xn identically distributed as X (or n realizations of the f.v. X).

Usually, the functional variable X can be viewed as a second order stochastic process
andH as the separable Hilbert space L2(J) of square integrable functions defined on the
interval J . The associated inner product for such functions is 〈x, y〉 =

∫
x(t)y(t)dt and

the most common type of norm, called L2-norm, is related to the above inner product
through the relation ‖x‖2 = 〈x, x〉 =

∫
x2(t)dt. In a functional context, equivalence

between norms fails and the choice of a preliminary norm becomes crucial that can be
drawn by the shape of the functions, as noted in [9].

Let X be a square integrable functional variable with values in a separable Hilbert
space H. We can define a few usual functional characteristics of X, for all s, t ∈ J , as
follows:

Functional Principal Component Analysis of Aircraft Trajectories 4



• the mean function µ(t) = E [X(t) ],

• the covariance function CovX(s, t) = σ(s, t) = E [X(t)X(s) ]−E [X(t) ] E [X(s) ],

• the variance function VarX(t) = σ2(t) = E [X(t)2 ]− (E [X(t)) ]2,

In the following, we will assume that X is centered, i.e. µ = 0, otherwise, subsequent
results refer to X − µ. In addition, the covariance operator induced by the covariance
function, plays a crucial role in FDA, particularly in Functional Principal Component
Analysis, as will be seen in the next section.

Definition 2.3. The covariance operator Γ : H −→ H is defined by

∀v ∈ H, Γv(t) =

∫
J

σ(s, t)v(s)ds.

The covariance operator is a linear Hilbert-Schmidt operator in the functional space
of square integrable functions L2(J) associated to the Hilbert-Schmidt kernel σ [5].

We can derive some empirical characteristics, among others, the sample mean func-
tion, the sample covariance function and the sample variance function as below

Xn(t) =
1

n

n∑
j=1

Xj(t),

σ̂n(s, t) =
1

n

n∑
j=1

Xj(t)Xj(s),

σ̂2
n(t) = σ̂n(t, t) =

1

n

n∑
j=1

Xj(t)
2,

where X1, . . . , Xn are independent functional variables identically distributed as X.
The sample covariance function σ̂n induces the sample covariance operator Γ̂n as follows

Γ̂nv(t) =

∫
J

σ̂n(s, t)v(s)ds =
1

n

n∑
j=1

〈Xj, v〉Xj(t), v ∈ H.

Note that X is a functional space H-valued random function and its observation
x is a non-random function of H. Usually, in practice, functional data x1, . . . , xn are
observed discretely: we only observe a set of function values on a set of arguments
that are not necessarily equidistant or the same for all functions. Because data are
observed on a discretized grid, it could make sense to apply standard multivariate sta-
tistical tools where at each time value tj, the observed vector-functions (xi(tj))i=1,...,n

can be viewed as variable vectors. Yet in recent years, advances in computing and data
storage have increased the number of observations on ever finer grids. Standard me-
thods of multivariate statistics have became inadequate, being plagued by the “curse
of dimensionality”, as the number of variables has became much more important than
the number of individuals. As a result, statistical methods developed for multivariate
analysis of random vectors are inoperative and FDA is a relevant alternative of multi-
variate statistical tools. As examples of FDA techniques, we can mention Functional
Principal Component Analysis, Functional Discriminant Analysis and Functional Lin-
ear Models.

Discretized data have thereby to be transformed into functional data, as is requested
in this framework, especially when observations are noisy. Most procedures developed
in FDA are based on the use of interpolation or smoothing methods in order to estimate

Functional Principal Component Analysis of Aircraft Trajectories 5



the functional data from noisy observations. Examples of such methods outlined in [25]
are, among others, kernel estimation, local polynomial estimation, smoothing splines,
B-splines and basis function expansions such as a Fourier basis or wavelets. When the
observed data are noisy, it may be important to combine smoothing techniques within
functional data analysis. Finally, we can distinguish two important characteristics of
functional data: data are intrinsiquely functional in nature (considered to be elements
of an infinite-dimensional space) and the observed measurements are viewed as the
values of sample paths with possibly measurement errors. Then, in FDA, two types of
errors have often to be considered: sampling error in random functions generated from
an underlying process, and measurement error when functions are unknown, discrete
noisy data.

For illustrating, in Air Traffic Management (ATM), the aircraft trajectory data
fi(t) = (xi(t), yi(t), zi(t)), i = 1, . . . , n, collected over time are effectively producing
three dimensional functions over the observed intervals [0, Ti]. There is no way to
measure fi at each time point, because aircraft trajectories are measured with radars.
We only have access to values at given times with about Ni radar measurements for
each trajectory made over slightly different intervals [0, Ti]. Time arguments at which

Figure 3: Sample aircraft trajectories (Paris-Toulouse)

trajectories are observed are not necessarily the same for each aircraft and may vary
from one record to another. Although each observation could be viewed as Ni data
points rather than one function, the collection of points possess a certain smoothness
property that facilitates functional data interpretation. However, the assumption that
all aircraft trajectories are sample paths from a single stochastic process defined on a
time interval [a, b] is clearly not satisfied: departure times are different and the time
to destination is related to the aircraft type and the wind experienced along the flight.
Ensuring a common starting time is very easy, just by assigning time 0 to the start of the
flight and shifting accordingly all sample times along the trajectory as in Figure 3. The
issue arising from aircraft type and exogeneous stochastic factors is more challenging.
The remaining individual time variation, due to differences in dynamics, which occurs
in addition to amplitude variation, is a more complex problem, well known in FDA as
registration problem.

Aircraft trajectories exhibit high local variability both in amplitude and in dyna-
mics. We could be interested in exploring the ways in which aircraft trajectories vary
and highlight their characteristic features. Some of these features are expected to be
there but other aspects may be surprising and can eventually be related to other vari-
ables such as wind, temperature, route or aircraft type. An extended problem is to
bring out the common features between different routes. Visualization and classifica-
tion of such trajectories may be another interesting problem in an exploratory analysis.
One may identify aircrafts with outlying trajectories that may be studied or removed

Functional Principal Component Analysis of Aircraft Trajectories 6



before proceeding further analysis. In addition, a principal component analysis would
be helpful to generate new aircraft trajectory samples. For instance, clustering and
PCA techniques may be useful in direct and reverse edge bundling techniques applied
to aircraft trajectories (work in progress).

Similar problems arise in many fields of applied research; for instance, biology
and biomedicine with longitudinal growth studies, medicine with psychophysiological
studies of electro-encephalogram (EEG) curves and brain images, applied economics
with studies of production functions and economic panel data, lead to similar func-
tional patterns. There are numerous examples in the literature, in various other fields,
as in meteorology with mean temperature curves, or in speech recognition with log-
periodogram curves for different phoneme classes. The goals of functional data analysis
outlined in [25], are essentially the same as those of any other branch of statistics, as
FDA aims to:

• represent the data in ways that facilitate further analysis;

• display the data so as to highlight various characteristics;

• study important sources of pattern and variation among the data;

• explain variation in a outcome or dependant variable by using input or indepen-
dant variable information;

• compare two or more sets of data with respect to certain types of variation, where
two sets of data can contain different sets of replicates of the same functions, or
different functions for a common set of replicates.

3 Functional Principal Component Analysis

Multivariate Principal Component Analysis (PCA) is a powerful exploratory statistical
method which synthetizes the quantity of data information by creating new descrip-
tors when we observe more than two numeric variables [20, 13]. The main idea of
PCA relies on creating a small number of new uncorrelated variables with maximal
variance as linear combination of the originally correlated variables. PCA was one of
the first methods of multivariate analysis to be generalized to the infinite-dimensional
case. The first studies and tools developed for functional data were based on signal
processing, principal component analysis and Karhunen-Loève decomposition. Rao
[21] and Tucker [31] first introduced the earliest approach of PCA that linked factor
analysis methods with growth curve models. Deville [8] generalized principal compo-
nent analysis to stochastic processes and introduced the term of harmonic analysis
for the orthogonal decomposition of a random function. Dauxois et al. [6] [7] pro-
posed a mathematical framework and studied consistence and asymptotic properties
for the principal component analysis of a vector random function. As for the covari-
ance matrix in the multivariate standard case, the variance and covariance functions of
functional variables are difficult to interpret and one goal is to analyze the variability
of the functional data in a understandable manner. Functional Principal Component
Analysis (FPCA) is an useful tool for studying functional data providing common func-
tional components explaining the structure of individual trajectories. By approximat-
ing infinite-dimensional random functions by a finite number of scores, FPCA appears
as a dimension reduction technique just as in the multivariate case and cuts down the
complexity of the data. Finally, FPCA can be seen from two different points of view:
a non-parametric point of view and a semi-parametric model, these two approaches
being connected by the Karhunen-Loève decomposition.

Functional Principal Component Analysis of Aircraft Trajectories 7



3.1 Generalization to the infinite-dimensional case

In FDA, the counterparts of variable values xi = (xi1, . . . , xip)
T are function values

xi(t), i = 1, . . . , n. Many properties of standard PCA can be generalized to infinite
dimension, replacing matrices by linear operators, summations over j by integrations
over t to define the inner product in the square integrable functional Hilbert spaceH. In
a non-parametric point of view, the variability of the sample is characterized by spectral
decomposition of the sample covariance operator. Suppose that X is a centered square
integrable functional variable of H. As in multivariate PCA, we want to find weight
functions γi such that the variance of the linear combination 〈γi, X〉 is maximal

max
γi∈H

Var ( 〈γi, X〉 ) subject to 〈γi, γk〉 = δik, k ≤ i, i = 1, 2, . . . , (1)

or equivalently

max
γi∈H

∫ ∫
γi(s)σ(s, t)γi(t)dsdt subject to 〈γi, γk〉 = δik, k ≤ i, i = 1, 2, . . . ,

where σ(s, t) = E [X(s)X(t) ] denotes the covariance function of X. The solutions are
obtained by solving the Fredholm functional eigenequation,∫

J

σ(s, t)γi(t)dt = λiγi(s), s ∈ J,

that can be expressed by means of the covariance operator Γ induced by the covariance
function σ such that

Γγi(s) = λiγi(s), s ∈ J, (2)

where γi is now an eigenfunction rather an eigenvector, corresponding to the eigenvalues
λi of the covariance operator Γ, and the maximum variance is equal to λi. The eigen-
functions γi of the covariance operator Γ are called functional principal components or
principal component functions and the random variables θi = 〈γi, X〉 =

∫
γi(t)X(t)dt

are called principal component scores of X into the γi-direction [25].

3.2 Estimation and Properties

When the covariance function is unknown, we can replace it by its sample version. The
maximization problem (1) becomes

max
γi∈H

1

n

n∑
j=1

〈Xj, γi〉2 = max
γi∈H
〈γi, Γ̂nγi〉 subject to 〈γi, γk〉 = δik, k ≤ i, i = 1, . . . , n.

or equivalently

max
γi∈H

∫ ∫
γi(s)σ̂n(s, t)γi(t)dsdt subject to 〈γi, γk〉 = δik, k ≤ i, i = 1, . . . , n.

The solutions are obtained by solving the empirical version of the Fredholm eigenequa-
tion, for i = 1, . . . , n,

Γ̂nγ̂i(s) = λ̂iγ̂i(s), s ∈ J,

where γ̂1, . . . , γ̂n are the eigenfunctions of Γ̂n, ordered by the corresponding eigenvalues
λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n ≥ 0 and they form an orthogonal basis of the linear space spanned

Functional Principal Component Analysis of Aircraft Trajectories 8



by X1, . . . , Xn. The scores θij = 〈γ̂i, Xj〉, j = 1, . . . , n, into the γi-direction are centered
and uncorrelated random variables such that, for all i, k = 1, . . . , n, i 6= k,

1

n

n∑
j=1

θij = 0,
1

n

n∑
j=1

θijθkj = 0,
1

n

n∑
j=1

θ2ij = λ̂i.

Dauxois et al. [7] showed consistency and asymptotic properties of Γ̂n, γ̂i and λ̂i
under mild assumptions. Let X1, . . . , Xn be an independent identically distributed
random sample from a random process X, E [ ‖X‖4 ] < +∞. The norm of an operator
G : H −→ H is defined as

‖G‖ = sup
ψ∈H,‖ψ‖=1

‖Gψ‖.

In the literature, it is often assumed that µ = 0 and all results presented here can be
rewritten by replacing X by X−µ. If the mean function µ is unknown, we can replace
it by its sample version. It can be shown that the term that comes from using Xn

instead of µ is negligible for asymptotic results.

Proposition 3.1. 1. The sequence of random operators (Γ̂n)n∈N is unbiased and
converges almost surely to Γ.

2. For any v ∈ H with ‖v‖ = 1, we obtain

E
[
‖Γ̂n − Γ‖2

]
≤ 1

n
E
[
‖X‖4

]
.

3. Let Z = n1/2(σ̂−σ) denote the scaled difference between the covariance functions
σ̂ and σ. Then, the random function Z converges in distribution to a Gaussian
process with mean 0.

The following inequalities about the eigenvalue estimators can also be verified

Proposition 3.2. 1. sup
j≥0

∣∣∣λ̂j − λj∣∣∣ ≤ ‖Γ̂n − Γ‖.

2. If λ1 > λ2, then

‖γ̂1 − γ1‖ ≤
2
√

2‖Γ̂n − Γ‖
λ1 − λ2

.

3. If for some j > 1, λj−1 > λj > λj+1, then

‖γ̂j − γj‖ ≤
2
√

2‖Γ̂n − Γ‖
min(λj−1 − λj, λj − λj+1)

.

This proposition has several important implications. Firstly, it is clear from the pre-
ceeding results that the eigenvalue estimators λ̂j converge asymptotically to λj at the
rate O(n−1/2). Secondly, we have mean-squared convergence at the rate O(n−1). Fi-
nally, the eigenfunction estimators γ̂j become sensitive to closely spaced eigenvalues
when the dimension L is large. If we cannot choose a reasonnably small dimension L,
then we should increase the sample size n in order to overcome this problem. But this
leads to slower convergence rate of the estimators λ̂j and γ̂j.

Dauxois et al. [7] showed another important result on the asymptotic distribution
of eigenvalues and eigenfunctions.
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Proposition 3.3. Assume that eigenvalues λj are all distinct. For each j ∈ N,√
n(λ̂j − λj) and

√
n(γ̂j − γj) converge in distribution to a zero-mean Gaussian ran-

dom variable. Particularly, if X is a Gaussian process, the eigenvalue estimator λ̂j is
asymptotically Gaussian with

√
n(λ̂j − λj)

L−→ N
(
0; 2λ2j

)
.

Several estimation methods of scores and principal component functions were developed
for FPCA, some of them are presented in the next section.

3.3 From Karhunen-Loève Representation to Functional Prin-
cipal Components

An important characterization of FPCA as a semi-parametric model directly results
from the Karhunen-Loève decomposition. Indeed, the eigenfunctions γ1, γ2, . . . of the
covariance operator Γ form an orthonormal basis of the functional space H so that

X(t) =
+∞∑
i=1

θiγi(t),

where the principal component scores θi = 〈γi, X〉 are centered and uncorrelated ran-
dom variables such that Var ( θi ) = λi ≥ 0. This yields an important representation
of individual trajectory X which provides a decomposition of X into orthogonal com-
ponents with uncorrelated random coefficients. This series expansion of X converges
in the L2-sense and also pointwise. The eigenvalue λi measures the variability in X
onto the γi-direction and the random coefficients θi are independant if X is a Gaussian
process. The total variance satisfies∫

σ2(t)dt =
+∞∑
i=1

λi =
+∞∑
i=1

E
[
θ2i
]
< +∞.

Another important property for FPCA involves the decomposition of variance and the
best L-term approximation property.

Proposition 3.4. For any further orthogonal basis ψ1, ψ2, . . . of H and every L ∈ N,

E

[
‖X −

L∑
i=1

θiγi‖2
]
≤ E

[
‖X −

L∑
i=1

〈ψi, X〉ψ‖2
]
.

This means that the finite expansion
∑L

i=1 θiγi is the best approximation of X with
a given number L of common components γ1, . . . , γL with varying strengths captured
by centered uncorrelated coefficients θi. Then, the maximization problem in (1) is
equivalent to the minimization problem of the mean integrated square error

min
γ1,...,γL

E

[
‖X −

L∑
i=1

θiγi‖2
]
, (3)

that is solved by the first L eigenfunctions γ1, . . . , γL of the covariance operator Γ
ordered by the corresponding eigenvalues λ1, . . . , λL. The two approaches have then
been connected by the Karhunen-Loève decomposition for which the mean integrated
square error in (3) is minimum if γ1, γ2, . . . , γL are the first L eigenfunctions of the
covariance operator Γ and θi = 〈γi, X〉.
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By characterizing individual trajectories Xj through an empirical Karhunen-Loève
decomposition,

Xj(t) =
n∑
i=1

θij γ̂i(t), j = 1, . . . , n,

FPCA leads to the best empirical basis expansion of functional data in the sense of
the mean integrated square error. Then, this may be better than alternative repre-
sentations of functional data by fixed basis functions such as Fourier series, wavelets
or B-splines. Indeed, the disadvantage of fixed basis functions is that a larger num-
ber of them may be needed to correctly represent a given sample of trajectories. In
addition, the estimated coefficients are not uncorrelated and are less convenient for sub-
sequent applications such as functional regression. The random scores θij = 〈γ̂i, Xj〉,
j = 1, . . . , n, represent the coordinates of the projected sample onto the γ̂i-direction
and can be interpreted as proportionality factors that represent strengths of the repre-
sentation of each individual trajectory by the ith principal component function. Fur-
thermore, FPCA provides eigenfunction estimates that can be interpreted as “modes
of variation”. These modes have a direct interpretation and are of interest in their own
right. They offer a visual tool to assess the main direction in which functional data
vary. As in the multivariate case, pairwise scatterplots of one score against another
may reveal patterns of interest and clusters in the data. In addition, these plots may
also be used to detect outliers and explain individual behaviour relatively to modes of
variation.

As in the multivariate standard PCA, we can easily measure the quality of the
representation by means of the eigenvalue estimators. The ith eigenvalue estimator λ̂i
measures the variation of the scores θi1, . . . , θin into the γ̂i-direction. The percentage
of total variation τi explained by the ith principal component and the cumulated ratio
of variation τCL explained by the first L principal components are then computed from
the following ratio

τi =
λ̂i∑n
i=1 λ̂i

, τCL =

∑L
k=1 γ̂k∑n
i=1 γ̂i

.

The amount of explained variation will decline on each step and we expect that a small
number L of components will be sufficient to account for a large part of variation.
Indeed, the total approximated error

∑n
k=L+1 λ̂k is expected to be sufficiently small

so that X̂j =
∑L

i=1 θij γ̂i is a good approximation of Xj for a relevant choice of L.
Determining a reasonable number L of components is often a crucial issue in FDA. We
have seen in the preceeding section that closely-spaced eigenvalues may cause problems
and lead to instability of the principal component estimators. The problem becomes
even more serious if approximations from discretized noisy functional data are involved.
To show this, let us assume that we observe n noisy functional data Yjk on a time grid
(tjk), k = 1, . . . ,m

Yjk = xj(tjk) + εjk, j = 1, . . . , n, k = 1, . . . ,m, (4)

where the error term εjk are independent and identically distributed random variables,
with E [ εjk ] = 0 and Var ( εjk ) = σ2. The best possible approximation of the xj(t) by
linear combinations of L basis functions in a L2-sense is

xj(t) '
L∑
i=1

θijγi(t).
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We can then view the problem stated in (4) as the following semi-parametric regression
problem

Yij =
L∑
i=1

θijγi(tjk) + εjk, j = 1, . . . , n, k = 1, . . . ,m,

where the i-th principal component γi can be interpreted as a regressor and the cor-
responding scores θi1, . . . , θin as unknown coefficients to be estimated. If we assume
that the principal components γ1, . . . , γL are known, we can estimate the scores θij by

least squares such that x̂j(t) =
∑L

j=1 θ̂ijgi(t). It is well known that the bias decreases
with the number L of regressors but the variance of x̂j(t) increases as L increases.
As this trade-off between bias and variance, choosing L = n components may be in-
adequate and high values of L are associated with high frequency components which
represent the sampling noise. A simple and fast method to choose the dimension L is
the scree plot that plots the cumulated proportion of variance explained by the first L
components against the number of included components L. Alternative procedures to
estimate an optimal dimension can be found in [15], [17] and [3].

4 Estimation Methods

In this section, we present several estimation methods developed for FPCA. The earliest
method applied to discretized functional data is based on numerical integration or
quadrature rules. A more sophisticated method is based on expansion of the functional
data on a known basis. This method will better take into account the functional nature
of the data and implies to reduce the eigenequation to discrete or matrix form. Finally,
we will focus on the regularized FPCA which involves smooth functional principal
components. In the following, we will suppose that we have observed a sequence of n
functional data x1(t), . . . , xn(t) to which the mean function was substracted.

4.1 Discretization Method

Rao [21] and Tucker [31] first introduced the earliest approach of PCA applied to
functional data discretized to a fine grid of time arguments that span the interval J .
When the design points are the same for all the observed functions x1, . . . , xn, the
functional eigenequation can be approximated by using quadrature rules. Usually,
functions are observed at the same time arguments, no necessarily equally spaced.
This yields an n×N data matrix

x1(t1) x1(t2) . . . x1(tj) . . . x1(tN)
x2(t1) x2(t2) . . . x2(tj) . . . x2(tN)

...
... . . .

... . . .
...

xi(t1) xi(t2) . . . xi(tj) . . . xi(tN)
...

... . . .
... . . .

...
xn(t1) xn(t2) . . . xn(tj) . . . xn(tN)


.

The discretization method stands on the approximation of the integrals by a sum of
discrete values as ∫

f(t)dt '
N∑
j=1

ωjf(tj),

where N is the number of time arguments, tj are the time arguments called quadrature
points and ωj are the weights called quadrature weights. Several numerical quadrature
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schemes can be used to involve a discrete approximation of the functional eigenequation

ΣnWγ̃m = λ̃mγ̃m,

where Σn = (σ̂n(ti, tj))i,j=1,...,N is the sample covariance matrix evaluated at the quadra-
ture points and W is a diagonal matrix with diagonal values being the quadrature
weights. The solutions γ̃m = (γ̃m(t1), . . . , γ̃m(tN)) are the eigenvectors associated with

the eigenvalues λ̃m of the matrix ΣnW . The orthonormality constraints are now

N∑
j=1

ωj γ̃l(tj)γ̃m(tj) = γ̃Tl Wγ̃m = δlm, l,m = 1, . . . , N.

The eigenvectors γ̃m form an orthonormal system relatively to the metric defined by
the weight matrix W . In general, the choice of interpolation functions is equivalent to
the choice of a metric.

We can express the functional eigenequation in an equivalent symmetric eigenvalue
problem

W 1/2ΣnW
1/2um = λ̃mum subject to uTl um = δlm, l,m = 1, . . . , N,

where um = W 1/2γ̃m. Then the whole procedure runs as follows

Algorithm:'

&

$

%

1. Choose the quadrature points tj and the quadrature weigths ωj for j = 1, . . . , N .

2. Compute the eigenvalues λ̃m and the corresponding eigenvectors um of the sym-
metric matrix W 1/2ΣnW

1/2.

3. Calculate the discretized principal components γ̃m = W−1/2um.

4. If needed, approximate the functional principal components from the discrete
values by using any convenient smoothing technique or interpolation method.

Ramsay and Silverman [25] note that, if the discretization values tj are closely spaced,
the choice of the interpolation method should not have a great effect compared to
sampling errors, even if the observations are corrupted by noise.

A naive approach consists in directly determining the eigenvectors of the discretized
sample covariance matrix Σn. This may lead to determine wrong results because the
resulting principal components may not form an orthonormal system in a functional
sense, except if the metric W is the identity matrix. A particular case is the one of
equally spaced design points. The eigenequation then becomes

ωΣnγ̂m = λ̂mγ̂m,

and the solutions are those of the standard multivariate PCA on the data matrix X

Σnum = ρmum,

where λ̂m = ωρm and um are the eigenvectors associated to the eigenvalues ρm of the
sample covariance matrix Σn. These eigenvectors obtained by the naive approach are
orthogonal in a functional sense but a normalization correction is needed. Usually, the
above equally spaced method is used after applying spline smoothing to the data.
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4.2 Basis Function Expansion

Another way to reduce the eigenequation problem to a discrete form is to represent
the functional data as linear combinations of known basis functions such as a Fourier
basis or spline functions. Functional data are estimated by their projections onto a
linear functional space spanned by K known basis functions ψ1, . . . , ψK such as

x̃i(t) =
K∑
k=1

θikψk(t) = θTi ψ(t),

where the unknown coefficient vectors θi = (θi1, . . . , θiK)T have to be estimated from
the data and ψ(t) denotes the vector-valued function (ψ1(t), . . . , ψK(t))T . This method
takes into account the functional nature of the data and makes it possible to discretize
the problem by replacing the functional data xi(t) by its coefficient vector θi, i =
1, . . . , n. The sample covariance function of the projected data

σ̃n(s, t) =
1

n

n∑
i=1

x̃i(s)x̃i(t) = ψ(s)TΘψ(t),

can be expressed by means of the K×K matrix Θ = 1
n

∑n
i=1 θiθ

T
i which represents the

covariance matrix of the coefficient vectors. Consider now the basis expansion of the
eigenfunctions γ̃m(s) = bTmψ(s) where bm = (bm1, . . . , bmK)T is the unknown coefficient
vector to be determined. This yields the discretized eigenequation

ΘWbm = λ̃mbm,

whereW = (〈ψi, ψj〉)i,j=1,...,K is the matrix of the inner products 〈ψi, ψj〉 =
∫
ψi(t)ψj(t)dt

of the basis functions. The solutions bm are the eigenvectors associated with the eigen-
values λ̃m of the matrix ΘW . The orthonormality constraints on the functional prin-
cipal components satisfy

〈γ̃l, γ̃m〉 =

∫
γ̃l(t)γ̃m(t)dt = bTl Wbm = δlm, l,m = 1 . . . , K.

We can remark that this method looks like the discretization method for which the
coefficient vectors θi = (θi1, . . . , θiK)T play the role of the discretized function vectors
xi = (xi(t1), . . . , xi(tN))T . FPCA is then equivalent to a standard multivariate PCA
applied to the matrix of coefficients with the metric defined by the inner product matrix
W = (〈ψi, ψj〉)i,j=1,...,K .

We can express the eigenvalue problem in a more standard form W 1/2ΘW 1/2um =
λ̃mum, where bm = W−1/2um. Then the whole procedure runs as follows

Algorithm:'

&

$

%

1. Calculate the matrices Θ, W and W 1/2 (Cholesky decomposition).

2. Determine the eigenvalues λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃K of the matrix W 1/2ΘW 1/2 and
the corresponding eigenvectors u1, . . . , uK .

3. Determine the coefficient vectors bm = W−1/2um.

4. The estimations of λm and γm are given by λ̃m and γ̃m(t) =
∑K

k=1 ukmψk(t).

Note that the inner product matrix W may be evaluated by any quadrature techniques
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except for particular choices of the basis functions. For example, for the orthonormal
Fourier series, W is the identity matrix. Moreover, the maximum number of eigen-
functions is now equal to the dimension K of the basis, possibly smaller than the
number N of discretized time arguments as is done in the the discretization approach.
As noted in [25], the number K of basis functions depends on many considerations,
in particular how efficient the basis functions are in reproducing the behaviour of the
original functions.

Two special cases have to be considered. Firstly, if the basis functions are orthonor-
mal, i.e. W = I, then the discretized eigenequation becomes Θbm = λ̃mbm and the
FPCA problem finally amounts to solving a standard multivariate PCA on the coeffi-
cient matrix. Such is the case if we use a Fourier series basis. The second special case
was introduced by Kneip and Utikal [17] for the case in which the functional data are
density functions. The main idea consists in using the functional data themselves as
their own basis functions. This approach overcomes the problem of the flexibility of
the basis respect to the data and is particularly appropriate if the number n of ob-
served functions is small relatively to the number K of basis functions. This empirical
basis implies that the covariance matrix Θ of the coefficients vectors is equal to 1

n
I.

Then the discretized eigenequation becomes Wbm = nλ̃mbm and the FPCA problem is
reduced to the spectral analysis of the symmetric matrix W = (〈xi, xj〉)i,j=1,...,n whose
entries are the inner products of the functional data. The solutions bm are the eigen-
vectors associated with the eigenvalues µm of the matrix W . They are related to the
eigenvalues λ̃m and the eigenfunctions γ̃m as follows

µ̃m = mλ̃m,

γ̃m = (µ̃m)−1/2
n∑
i=1

p̃imxi =

∑n
i=1 θimxi∑n
i=1 θ

2
im

,

and the principal score of the function xi onto the mth principal component is given
by
√
µ̃mp̃im. As previously, the entries of the matrix W have to be estimated by

some quadrature techniques or by an appropriate estimation method. However, if the
functional data xi are not observed at the same time arguments, the estimation of the
inner products in W may be difficult. A detailed discussion can be found in [17].

4.3 Smoothed Principal Component Analysis

In many applications, functional data are assumed to be smooth, and yet, the estimated
principal component functions may be rough and present important variability because
of the sampling error, the measurement noise and the choice of the basis functions. In
the unsmoothed FPCA approaches, the functional principal components are estimated
by maximizing the sample variance 〈γm, Γ̂nγm〉 of the projected data under some or-
thonormality constraints on the principal components. Rather than first smoothing
the functional data before proceeding with FPCA [25], it makes sense to incorporate
this smoothness assumption into the estimation procedure. The smoothed FPCA ap-
proaches, also called regularized FPCA in [25], are based on the well-known roughness
penalty approaches. The basic idea consists in adding a penalty term PEN(γm) into
the maximization problem such that the form

〈γm, Γ̂nγm〉 − αmPEN(γm) subject to ‖γm‖2 = 1 and 〈γl, γm〉 = 0 for l < m, (5)

quantifies the trade-off between fidelity to the data (in this case, it is measured by the
sample variance of the projected data in the γm-direction) and roughness as measured
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by the roughness penalty. This method was developed by Rice and Silverman [27] for
which a sequence of smoothing parameters αm controls the relative importance of the
roughness for each principal component γm.

Rather than penalizing the variance as is done in Rice and Silverman [27], Silverman
[30] proposed to incorpore the roughness penalty into the orthonormality constraints by
modifying the norm. In this approach, functional data and eigenfunctions are assumed
to have continuous and square integrable second derivatives. For a given smoothing
parameter α, Silverman [30] defined the modified inner product as follows

〈x, y〉α = 〈x, y〉+ α〈x(2), y(2)〉, x, y ∈ H,

with the corresponding squared norm ‖x‖2α = ‖x‖2 + α‖x(2)‖2. These are slight gene-
ralizations of the standard Sobolev inner products and norms. In the FPCA procedure,
the L2-orthonormality constraints are replaced by orthonormality constraints with res-
pect to the modified inner product 〈x, y〉α that takes into account the roughness of the
functions. Then, the functional principal components are found by maximizing

max
γm∈H

〈γm, Γ̂nγm〉 subject to ‖γm‖2α = 1 and 〈γl, γm〉α = 0 for l < m. (6)

Roughness is then penalized in a different manner than in (5): the orthonormality
constraint is now composed by the usual L2-norm term ‖γm‖2 and a roughness penalty

term ‖γ(2)m ‖2. Finally, as noted in [25], the problem (6) is equivalent to maximize

〈γm, Γ̂nγm〉
‖γm‖2α

=
〈γm, Γ̂nγm〉

‖γm‖2 + α‖γ(2)m ‖2
subject to 〈γl, γm〉α = 0 for l < m. (7)

To see this, note that scaling any γm to satisfy the orthonormality constraint in (6)
does not affect the value of the ratio (7), and so the maximum of the ratio is unaffected
by the imposition of the constraint. Once the constraint is imposed, the denominator
of (7) is equal to 1, and so maximizing the ratio subject to 〈γl, γm〉α = 0 is exactly the
same as the original maximization problem (6).

In [30], this method has been easily implemented in the periodic case when γm has
square integrable fourth derivative and when its second and third derivatives satisfy
some boundary conditions on the interval J . In this case, it is easy to check that
〈x(2), y(2)〉 = 〈x, y(4)〉 by integrating by parts twice. This implies that the modified
inner product can be expressed as 〈x, y〉α = 〈x, y + αy(4)〉. Defining the operator S
by (I + αQ)−1/2 where Q denotes the fourth derivative operator, the maximization
problem becomes

max
γm∈H

〈γm, Γ̂nγm〉 subject to 〈γl, S−2γm〉 = δlm for l ≤ m.

The solutions are obtained by solving the generalized eigenequation

Γ̂nγ̃m = λ̃mS
−2γ̃m = λ̃m(I + αQ)γ̃m, (8)

or equivalently SΓ̂nSgm = λ̃mgm where γ̃m = Sgm and gm is the eigenfunction with
the associated eigenvalue λm of the operator SΓ̂nS.

A simple algorithm for this method was easily implemented in [30] in the case of
Fourier series. Indeed, the operator S can be interpreted as a smoothing operator
and finding the eigenfunctions of the operator SΓ̂nS is equivalent to carrying out an
unsmoothed FPCA of the smoothed data Sxi. Next, the smoothing operator S is
applied to the resulting eigenvectors. Note that the orthonormality constraints are
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satisfied in the sense of the modified inner product 〈x, y〉α and not in the L2-sense as
gTl gm = γTl S

−2γm = 〈γl, γm〉α = δlm.
When Fourier expansions are no longer appropriate because fo the boundary con-

ditions, the previous method can be easily extended to any suitable basis expansion
such that x̃i(t) = θTi ψ(t) and γ̃m(t) = bTmψ(t) where θi = (θi1, . . . , θiK)T , bm =
(bm1, . . . , bmK)T are the coefficient vectors and ψ(t) denotes the vector (ψ1(t), . . . , ψK(t))T

of K known basis functions. Then, the penalized sample covariance in (7) can be ex-
pressed by means of the basis functions as

bTmWΘWbTm
bTmWbm + α bTmKbm

,

where Θ = 1
n

∑n
i=1 θiθ

T
i is the covariance matrix of the data coefficient vectors, W =

(〈ψi, ψj〉)i,j=1,...,K and K = (〈ψ(2)
i , ψ

(2)
j 〉)i,j=1,...,K are respectively the inner products ma-

trices of the basis functions and of their second derivatives. This yields the discretized
eigenequation

WΘWbm = λm(W + αK)bm.

Performing a factorization LLT = W + αK and defining S = L−1, the equation can
now be written as

(SWΘWST )um = λmum,

where bm = STum and um is the eigenfunction with associated eigenvalue λ̃m of the
matrix SWΘWST that represents the covariance matrix of the transformed coefficients
vector SWθi. This is equivalent to performing a basis expansion FPCA on the matrix
of the new coefficients θ̃i = SWθi. Then the whole procedure runs as follows

Algorithm:'

&

$

%

1. Calculate the matrices Θ, W and K.

2. Find L and S = L−1 (Cholesky decomposition or SVD).

3. Carry out a PCA on the coefficient vectors θ̃i = SWθi and determine the eigen-
values λ̃m and the eigenvectors um of SWΘWST .

4. Apply the smoothing operator ST , calculate the coefficient vectors bm = STum
and renormalize them so that bTmWbm = 1.

5. The estimations of λm and γm are given by λ̃m and γ̃m(t) = bTmψ = uTmSψ.

The drawback of this technique is that the functional principal components γ̃m are not
orthogonal in the L2-sense. Then, we may orthonormalize the coefficents bm with re-
spect to the matrix W , using a Gramm-Schmidt procedure. Silverman [30] showed
that the estimates are consistent under some regularity conditions when n→ +∞ and
α→ 0. The automatic choice of an appropriate smoothing parameter α can be solved
by using a cross-validation approach. Moreover, some theoretical results suggest that
the procedure developed by Silverman [30] gives better results than those of the Rice
and Silverman procedure [27]. Another approach, followed by Besse and Ramsay [2]
and Kneip [15], consists in smoothing the functional data first and then carrying out
unsmoothed PCA on the smoothed data. The differences with the smoothed FPCA
appear to be small but the comparison depends on the way in which the data are
smoothed. In all cases, smoothing procedures clearly improve the quality of the esti-
mation of the principal components.
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5 The Registration Problem

The process of registration, well known in the field of functional data analysis [28,
11, 25], is an important preliminary step before further statistical analysis. Indeed, a
serious drawback must be considered when functions are shifted, owing to time lags
or general differences in dynamics. Phase variation due to time lags and amplitude
variation due to intensity differences are mixed and it may be hard to identify what is
due to each kind of variation. This problem due to such mixed variations can hinder
even the simplest analysis of trajectories.

Firstly, standard statistical tools such as pointwise mean, variance and covariance
functions, may not be appropriate. For example, a sample mean function may badly
summarize sample functions in the sense that it does not accuratly capture typical
characteristics as illustrated in Figure 4. In addition, more complex analysis such as
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timeFigure 4: The left panel gives plot of simulated sample functions and the right
panel displays mean functions of unregistered curves (solid line) and registered curves
(dashed line).

trajectory clustering may be failed because distance between two similar trajectories
may be wrongly inflated by phase variation. In the case of FPCA, some functional
components may not correspond to effects added to a mean function but rather to
a transformation of time arguments and they may be shifted from function to func-
tion. Then, FPCA may produce too many components and some components can be
expressed as derivatives of others.

A registration method consists in aligning features of a sample of functions by
non decreasing monotone transformations of time arguments, often called warping
functions. These time transformations have to capture phase variation in the origi-
nal functions and transform the different individual time scales into a common time
interval for each function. Generally speaking, a non decreasing smooth mapping
hi : [a, b] → [ci, di], with [ci, di] the original time domain of the trajectory, is used to
map each trajectory yi to a reference trajectory x, usually called target or template
function, already defined on [a, b]. In this way, remaining amplitude differences be-
tween registered (aligned) trajectories yi ◦ hi can be analyzed by standard statistical
methods. The choice of a template function is sometimes tricky and it may be simply
selected among the sample trajectories as a reference with which we want to synchro-
nize all other trajectories. Note that warping functions hi have to be invertible so that
for the same sequence of events, time points on two different scales correspond to each
other uniquely. Moreover, we require that these functions are smooth in the sense of
being differentiable a certain number of times.
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Most of literature deals with two kinds of registration methods: landmark registra-
tion and goodness-of-fit based registration methods. A classical procedure called marker
or landmark registration aims to align curves by identifying locations ti1, . . . , tiK of cer-
tain structural features such as local minima, maxima or inflexion points, which can be
found in each curve [4, 14, 11]. Curves are then aligned by transforming time in such
a way that marker events may occur at the same time t01, . . . , t0K , giving hi(t0k) = tik,
k = 1, . . . , K. Complete warping functions hi are then obtained by smooth monotonic
interpolation. This non-parametric method is able to estimate possibly non-linear
transformations. However, marker events may be missing in certain curves and feature
location estimates can be hard to identify. Finally, phase variation may remain between
too widely separated markers. An alternative method is based on goodness-of-fit by
minimizing distance between registered trajectories yi ◦ hi and a template trajectory,
with possible inclusion of a roughness penalty for hi [22, 23]. A serious problem may
appear when functions have important amplitude variation and distance minimizing
methods may break down in this case. Indeed, the goodness-of-fit criterion will tend
to explain main differences by phase variation and leads to locally constant registered
trajectories as in Figure 5. Then it may be crucial to specify a procedure for estima-

Figure 5: The left panel gives plots of two shifted curves and the right panel displays
the registered curve y ◦ h in presence of amplitude variation.

tion of suitable warping functions hi in presence of amplitude variation. By adding
an amplitude effect for explicitly taking into account to amplitude variation, any tra-
jectory can be represented in the form ai(t)x(t) = yi ◦ hi(t). The unknown amplitude
functions ai(t) should be sufficiently smooth positive functions so that they retain the
basic structure of trajectories. Note that estimation of amplitude functions is not of
interest but it is just a tool to improve registration procedures as intensity differences
may be studied by a FPCA procedure. In parametric methods [29, 1], we consider a
parametric family of transformations, the simplest case being the scale-shift registra-
tion with constant amplitude, when hi is restricted to be affine, giving hi(t) = βit+ δi,
βi > 0 such that αix(t) = yi(βit+ δi), αi > 0. In the literature, a few semi-parametric
approaches have been also considered in which functions are obtained from a linear
combination of common shape functions by using some parametric transformations,
but no particular specification about shape functions is made [19, 10, 16, 18]. In many
applications, these methods may appear too restrictive because more complex possibly
non-linear time warping functions are necessary. Non-parametric approaches are often
more adapted and have received increasing attention in the literature. For example, a
monotonization operator can be used to characterize a flexible family of smooth mono-
tone warping functions that can be described by a homogeneous linear differentiable
equation [22]. Then warping functions are estimated by minimizing a global fitting
criterion in which a penalization term yields both smoothness and monotonicity of
warping functions. Note that this latter registration method as well as landmark reg-
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istration are implemented in softwares R and Matlab and can be downloaded through
the internet site www.functionaldata.org [26].

In registration, there is an intrinsic problem of unidentifiability that may lead to
badly identify time warping transformations. The challenge in presence of amplitude
variation is to correctly separate amplitude and phase variations in estimation proce-
dure. In semi-parametric approaches, a possible solution is to require some norma-
lization conditions on parameters. In a purely non-parametric context, this problem
turns out to be insuperably difficult to solve. Indeed, there is no way of correctly
identifying warping functions in the sense that we could always find another time
transformation h̃i 6= hi which compensates a different amplitude function ãi 6= ai such
that ai.x ◦ h−1i = ãi.x ◦ h̃−1i except if amplitude function is assumed to be constant.
In this latter case, any trajectory can be represented in the form αi.x ◦ h−1i for some
unique warping function hi and constant amplitude αi can be easily identified as being
a proportionality factor between the registered trajectory and the target at a certain
landmark point. Unfortunatly, even in this case, there is no mean to correctly identify
warping functions and amplitude if trajectories are linear. Then, differences between
trajectories may be wrongly explained either by amplitude variation or by phase vari-
ation.

For illustrating this problem, speed discrepancy related to aircraft type may be
adequately handled by affine registration, provided trajectories are full ones (i.e. in-
clude synchronization of both departure and arrival point). However, in order to well
perform a FPCA procedure, we need to estimate possibly non-linear time warping
transformations. Unfortunatly, non-parametric smooth monotone warping methods
may not be relevant for aircraft trajectory registration in some cases and may lead to
inadequate results for the following reasons. Firstly, as all trajectories have not the
same origin-destination pair, the assumption that they are sample paths from a single
stochastic process is not satisfied. Then, it may not be relevant to register functions
that don’t share similar structure (i.e. similar sequence of shape features such as peaks,
valleys etc . . . ). In addition, for segments of flight paths, things are more complicated
since the observations may match only a small portion of a larger reference trajectory.
Finally, latitude and longitude trajectories are essentially linear when time argument
grids at which trajectories are observed are not enough fine to highlight their detailed
structures. Only altitude trajectories appear to be piecewise linear and consist of a
sequence of flight levels connected by climb or descent phases. Latitude, longitude
and altitude exhibit high local variability both in amplitude and in phase that can be
difficult to identify because of the problem of unidentifiability due to linearity. Note
that the first problem is less crucial that the two latters if the main goal is less to
correctly align trajectories than compute distance between trajectories. For instance,
we may expect that this problem will not too much disturb a clustering procedure. In-
deed, after registration, trajectories sampled from the same stochastic process should
be correctly registered while trajectories sampled from different stochastic processes
will badly be registered and remain far away. The more problematic unidentifiability
problem is illustrated in Figure 6 for both longitude and latitude trajectories. We
can clearly see the effect of linearity on registration procedure: the estimated warping
functions mainly explain amplitude-part variation. This completely destroys structure
of the registered trajectory (x(t), y(t)) and will lead to compute a mistaken distance
between two trajectories. As an alternative, we might perform a landmark registration
method. However, this may be unworkable because of possibly missing marker events
in truncated observations. Indeed, it is particularly irrelevant to match the first and
last time locations of truncated trajectories to departure and arrival points of a full
template.

Functional Principal Component Analysis of Aircraft Trajectories 20



0 1000 3000 5000

−
10

0
0

10
0

30
0

time

X
(t

)

target
unregistered
registered

0 1000 3000 5000

−
30

0
−

10
0

10
0

30
0

time

Y
(t

)

target
unregistered
registered

●●
●

●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●
●●●

●●●●●●
●

−100 0 100 200

−
30

0
−

10
0

10
0

X(t)

Y
(t

)

● target
unregistered
registered

Figure 6: The two upper panels give plots of latitude and longitude trajectories and
the bottom panel displays X − Y trajectories.

To avoid this problem as well as the unidentifiability problem, we may perform a
purely parametric approach applied to altitude trajectories by simply using the above
described scale-shift registration with constant amplitude. Altitude trajectories can be
described as piecewise linear functions composed by one single flight level eventually
connected by climb or descent phases. We will then estimate warping functions by
registering only segments of flight paths that match this flight level rather than full
trajectories (work in progress).

To illustrate the influence of phase variation on a FPCA procedure, we generated
200 sinus curves over the interval [0, 1] of the form

yi(t) = 30ai sinπt, (9)

where the coefficients ai were randomly generated from the gaussian distribution
N (1; 0.052). The associated warping functions hi were hi(t) = t5. The unregistered
curves yi(t) = x∗i (hi(t)) are shown in the left panel of Figure 7.

A FPCA procedure applied to the unregistered curves will produce too many prin-
cipal components than it is needed rather than just only one when curves are syn-
chroniezd. In particular, the second principal component can be interpreted as a
purely time shift effect as shown in Figure 8 and is not of interest for the analysis of
the variability of the curves. In addition, phase variation influences the shape of the
first principal component which is composed of two bumps rather than just one. This
component may not be representative of the structure of the curves. Finally, the score
histogram of the first component has not a symmetric unimodal distribution. There
is a bimodal variation in the data and scores of the two first principal components
have a kind of correlation directly related to the bimodal grouping. This bimodal
distribution may be problematic if we approximate the score distribution of the first
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Figure 7: The left panel displays 200 random unregistered curves generated from (9)
and warping functions hi(t) = t5. The right panel gives these curves after registration.
The heavy solid lines are the respective pointwise means of these curves.
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Figure 8: The left panel gives the two first principal components curves and the right
panel gives the score histogram on the first pricipal component.

principal component by an unimodal distribution, for instance a gaussian distribution.
This problem remains important even if only one outlier curve is out of the group of
synchronized curves.

6 Application to Aircraft Trajectories

6.1 The Aircraft Trajectory Dataset

We now apply the previously described FPCA technique to a 1077 aircraft trajectory
dataset. These data consist of radar tracks between Paris Orly, Charles de Gaulle
(CDG) and Toulouse Blagnac airports recorded during two weeks. Most of the aircrafts
are Airbus A319 (25%), A320 (41%) and A321 (24%), followed by Boeing B733 (4%)
and B463 (2%) a member of British Aerospace BAe 146 family. Other aircraft types
(A318, A333, B738, E120, AT43, AT45 and AT72) account for a smaller amount of
aircrafts. Radar measurements are observed in the range of 4-6960 seconds at 4 seconds
intervals. As noted in Section 1, the assumption that all trajectories are sample paths
from a single stochastic process defined on a time interval is clearly not satisfied in the
case of aircrafts: departure times are different, even on the same origin-destination pair
and the time to destination is related to the aircraft type and the wind experienced
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Figure 9: Sample of aircraft trajectories on the range of 4-200 seconds (left panel) and
whole trajectories between Toulouse and Paris Charles de Gaulle airports. The heavy
solid line is the mean of trajectories.

along the flight. Without loss of generality, we will assign a common starting time 0
to the first radar measurement of the flights. Trajectory altitudes in Figure 9 consist
of a sequence of flight levels (FL) measured in hundreds of feet and connected by
climb or descent phases. These data exhibit high local variability in amplitude and
in phase but our goal is to analyze the amplitude variability by means of a FPCA
technique. As observed raw data were passed through pre-processing filters, we get
radar measurements at a fine grid of time arguments with few noise. We have then
used the discretization method described in Section 2. We will first focus on departure
trajectories to avoid the registration problem. Next, we will analyze whole trajectories
and compare FPCA results for unregistered and registered trajectories.

6.2 Departure Data

As phase variation may badly influence FPCA, each track was reduced to the range of
4-200 seconds for which phase variations seem negligible. Figure 10 displays the first
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Figure 10: The left panel gives the scree plot of the cumulated variance explained by
principal components and the right panel displays the first four principal component
curves of aircraft trajectories.

four principal component functions for these track data after the overall mean has been
removed from each track. Note that principal component functions are defined only to
within a sign change. The percentage 88.1% of total variation explained by the first
principal component indicates that this type of variation strongly dominates all other
types of variation. The first principal component is a negative function, decreasing with
time. It quantifies an overall decrease in altitude that we can call overall effect (PC1).
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This effect begins to be important around 100 seconds after takeoff and is growing with
time. Aircrafts with high negative scores would show especially above-average tracks
displaying more important climb rates increasing with time. As the second principal
component must be orthogonal to the first one, it will define a less important mode of
variation. It accounts for 6.7% of total variation and consists of a high negative contri-
bution for the 0-140 seconds climb phase with minimum at around 60 seconds followed
by a much less important positive contribution. As the third and fourth components
are required to be orthogonal to the first two components as well as to each other,
they account for small proportions of total variation. The third component accounts
for only 2.6% of total variation and consists of negative contributions for the two 0-90
seconds and 170-200 seconds phases. The fourth principal component is difficult to
interpret and accounts for a very small percent of total variation. Nevertheless, we can
see that it looks like the third principal component except for a time shift.

A helpful graphical representation proposed in [25] facilitates the interpretation of
each principal component. It consists in visualizing effects of each functional principal
component on the overall mean function by adding and substracting a suitable multiple
of each principal component. Figure 11 displays the overall effect increasing with time
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Figure 11: The effects on the mean aircraft trajectory (solid curve) of adding (+) and
substracting (-) a multiple of each of the first four functional principal components.

due to the first principal component. The second principal component indicates a
mode of variation corresponding to early climb rates. Aircrafts with high negative
scores would display higher climb rates up to 140 seconds and later slightly reverting
to the mean path. On the other hand, those with high positive scores would display
smaller climb rates and trajectories seem to be linear. We call this effect the takeoff
effect (PC2). We can also easily see the effect of the third component on the overall
mean. Aircrafts with high negative scores would display an overall trajectory up to 70
seconds followed by a constant flight level during 60 seconds (4000 feet), later reverting
to higher climb rates to compensate it. We call this effect the first level effect (PC3).
Furthermore, we can visualize the effect due to the fourth principal component that
we call time shift effect (PC4). High negative scores would display earlier first flight
level (3000 feet) at 120 seconds.
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Finally, pairwise scatterplots of aircraft scores may reveal patterns of interest and
clusters in aircraft trajectories by route and aircraft type. In addition, these plots
may also be used to detect outliers. For simplifying scatterplots, FPCA was applied
to a 145 aircraft trajectory dataset between Toulouse Blagnac and Paris Charles de
Gaulle airports and we have grouped together AT43, AT45, AT72 and E120 aircraft
types, now labeled AT type. We have found similar components to those observed
previously. The scatterplot in the left panel of Figure 12 displays aircraft scores by
aircraft type of the overall effect (PC1) against the takeoff effect (PC2). Clearly, the
first component divides aircraft trajectories in two groups: AT, B463 and most of
A321 with positive PC1 scores (under-average trajectories with overall lower climb
rates) and A319, B733 with negative scores (above-average trajectories with overall
higher climb rates). The second component corresponding to the takeoff effect (PC2)
divides trajectories in a different manner: AT, B463 and A319 with positive scores
(slower takeoff) and A320, A321 with negative scores (faster takeoff). Then, we can
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Figure 12: Scatterplots of the individual trajectory scores by aircraft type.

see that smallest aircraft types such as AT and E120 should display overall lower climb
rates associated with slower takeoff. In addition, A319 and A321 aircrafts trajectories
are completely different: A319 aircrafts have negative PC1 scores (overall higher climb
rates) associated with positive PC2 scores (slow takeoff) while A321 aircrafts have
positive PC1 scores (overall lower climb rates) associated with negative PC3 scores
(fast takeoff).

The second scatterplot in the middle panel of Figure 12 shows aircraft scores by
aircraft type of the overall effect (PC1) against the first level effect (PC3). Firstly,
we clearly detect one outlier with very high negative PC1 score and very high positive
PC3 score due to a B733 aircraft. This aircraft displays a very atypical trajectory with
a global high climb rate and no first level effect to compensate it. Moreover, the third
component divides trajectories in two groups: AT, B463, B733 with positive scores (no
first level effect) and A320, most of A321 with negative scores associated with a first
level effect.

The third scatterplot in the right panel of Figure 12 gives aircraft scores of the first
level effect (PC3) against the time shift effect (PC4). The fourth component divides
trajectories in two groups: AT, B733 with positive scores (later first level) and A320
with negative scores (ealier first level).We can find again the same outlier than the
previous one with one very high positive PC4 score. This B733 aircraft has an overall
above-average trajectory with fast takeoff and no early first level effect to compensate
it. We can easily summaryze the previous results in Table 1. Note that phase variation
may produce too many components and trajectories may be characterized by only three
principal components rather than four components. To improve results, phase variation
should be removed by using a registration procedure.
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Table 1: Individual scores by aircraft type

Aircraft type PC1 PC2 PC3 PC4 Outlier

AT, E120, B463 + + + +
A320 0 - - -
B733 - - + + *
A319 - + 0 0
A321 + - - 0

6.3 Whole Trajectory Data

We now consider whole trajectories between Toulouse and Paris Charles de Gaulle
airports and compare FPCA results obtained from unregistered and registered tra-
jectories. We can see in Figure 13 that unregistered trajectories exhibit high phase

Figure 13: Whole trajectories between Toulouse and Paris CDG airports: unregistered
(left panel) and registered (middle panel). The heavy solid line is the mean of trajec-
tories. The right panel displays warping functions estimated by landmark registration.

variation. These differences in dynamics may disturb the sample mean function and
consequently a FPCA procedure. Altitude trajectories can be described as piecewise
linear functions composed by one maximum flight level connected by climb or descent
phases. The registered mean function is more representative of such structure of tra-
jectories. Trajectories have been registered by using a landmark registration procedure
with three markers: the time to destination and the two time locations of segments
that match the maximum flight level.
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Figure 14: The first four principal components of aircraft trajectories: unregistred in
the left panel and registered in the middle panel. The right panel displays the scree
plots of cumulated variance.
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Figure 14 displays the first four principal components for unregistered trajectories
in the left panel and registered trajectories in the middle panel. For unregistered
trajectories, the fourth principal component looks like the third one except for a time
shift. The first principal component consists of a negative contribution for the 0-2500
seconds phase followed by an important positive contribution.
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Figure 15: The effects on the mean aircraft trajectory (solid curve) of adding (+) and
substracting (-) a multiple of each of the first four principal components for unregistered
trajectories in the three top panels and registered trajectories in the three bottom
panels.

Figure 15 displays the effects of this principal component on the mean function. We
clearly visualize that this effect corresponds to an increase in the differences between
the maximum level and the descent phase: trajectories with higher flight level have a
faster descent phase and trajectories with lower flight level have a slower descent phase.
The second principal component corresponds to an overall increase in altitudes and the
third component displays a time shift in the arrival phase and in the maximum flight
level followed by two different descent phases. Phase variation has probably disturbed
the estimation of the principal components because amplitude and phase variation are
mixed.

For registred trajectories, we can see in Figure 14 and Figure 15 that the first prin-
cipal component now corresponds to an overall increase in altitude and now accounts
for the main percentage of total variation with 76.3% rather than 15.7%. The second
principal component displays the differences between the maximum flight level and
the descent phase with a less important variation (11.9% of total variation rather than
62.4%). The time shift effect is removed from the third component which corresponds
to the two different descent phases and represents only 3.8% of total variation rather
than 9.9%. These differences are due to phase variation that are mixed to amplitude
variation when trajectories are shifted. Finally, principal components of registered
trajectories capture a more important proportion of total variation than principal
components of unregistered trajectories. We only need three components to capture
92% of total variation instead of four principal components in the case of unregistered
trajectories. Then, a preliminary registration procedure leads to reduce the number
of principal components. Modes of variation are more representative and will better
explain the main directions in which aircraft trajectories vary.
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7 Conclusion

Functional Data Analysis (FDA) consists in studying a sample of random trajectories
called functional data, generated from an underlying stochastic process. Functional
Principal Component Analysis (FPCA) generalizes the standard multivariate PCA to
the infinite-dimensional case by analyzing the covariance structure of functional data.
It can be seen from two different points of view, these two approaches being connected
by the Karhunen-Loève decomposition: in a non-parametric point of view, variability
of functional data is characterized by spectral decomposition of the sample covariance
operator and in a semi-parametric model, the individual trajectories are characterized
through a linear combination of empirical basis functions called functional principal
components with random coefficients called principal component scores. These compo-
nents are estimated by the eigenfunctions corresponding to the largest eigenvalues of
the sample covariance operator and they can be interpreted as modes of variation.

FPCA has many advantages. By characterizing individual trajectories through an
empirical Karhunen-Loève decomposition, FPCA can be used as a dimension reduction
technique. Moreover, rather than studying infinite-dimensional functional data, we
can focus on a finite-dimensional vector of random scores that can be used into further
statistical analysis such as cluster analysis. In addition, the estimated coefficients
are uncorrelated and may be more convenient for subsequent applications. Finally,
FPCA may be better than alternative representation of functional data by fixed basis
functions such as Fourier series, wavelets or B-splines that may require a larger number
of fixed basis functions to correctly represent a given sample of trajectories. This idea
is used in principal component regression in which the regression function is expanding
in the basis of the empirical eigenfunctions.

FPCA is a powerful tool to analyze and visualize the main directions in which tra-
jectories vary. As in the multivariate case, pairwise scatterplots of scores may reveal
patterns of interest, clusters in the data and atypical trajectories. We have successfully
applied this technique to analyze aircraft trajectories and it can be easily extended to
the three dimensional case. Moreover, this technique may be useful to generate aircraft
trajectories by sampling the principal component scores. However, a FPCA procedure
should not be directly applied to whole trajectories because phase and amplitude varia-
tions may be mixed. This registration problem remains crucial because the assumption
that all trajectories are sample paths from a single stochastic process is not satisfied
and may be complex in the case of three dimensional aircraft trajectories. For this
reason, a preliminary step may consist of the registration of trajectories by suitable
transformations of time called warping functions before proceeding to sophisticated
statistical analysis such as FPCA or clustering. This problem is difficult to solve par-
ticularly when trajectories are linear. Rather than register trajectories in a first step,
an alternative consists in combining registration with FPCA as is done in [18, 29]. A
first approach of this problem was proposed in [29]: phase variation is assumed to con-
sist of individual time shifts h(t) = t+ τ . More recently, in [18], warping functions are
represented as linear combinations of known basis functions such as spline basis and
are incorporated into a FPCA procedure. As a generalization, a more complex model
consisting of a double FPCA approach will be studied in which warping functions are
modeled as a linear combination of unknown basis functions (work in progress). This
approach can be useful to generate realistic sample of aircraft trajectories taking into
account possible phase variation. Another future work consists in using a Common
FPCA procedure that can be useful to provide common components explaining the
structure of trajectories sampled from different routes.
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