Efficient mold Danscooling optimization by using model reduction

Abstract : Optimization and inverse identification are two procedures usually encountered in many industrial processes reputed gourmand for the computing time view point. In fact, optimization implies to propose a trial solution whose accuracy is then evaluated, and if needed it must be updated in order to minimize a certain cost function. In the case of mold cooling optimization the evaluation of the solution quality needs the solution of a thermal model, in the whole domain and during the thermal history. Thus, the optimization process needs several iterations and then the computational cost can become enormous. In this work we propose the use of model reduction for accomplishing this kind of simulations. Thus, only one thermal model is solved using the standard discretization technique. After that, the most important modes defining the temperature evolution are extracted by invoking the proper orthogonal decomposition, and all the other thermal model solutions are performed by using the reduced order approximation basis just extracted. The CPU time savings can be impressive.
Type de document :
Article dans une revue
International Journal of Material Forming, Springer Verlag, 2010, pp 1-10. 〈10.1007/s12289-010-0988-5〉
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-01349389
Contributeur : Laurence Porte <>
Soumis le : mercredi 27 juillet 2016 - 13:27:36
Dernière modification le : mercredi 23 mai 2018 - 17:58:04

Fichier

IJMF_10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Fabrice Schmidt, Nicolas Pirc, Marcel Mongeau, Francisco Chinesta. Efficient mold Danscooling optimization by using model reduction. International Journal of Material Forming, Springer Verlag, 2010, pp 1-10. 〈10.1007/s12289-010-0988-5〉. 〈hal-01349389〉

Partager

Métriques

Consultations de la notice

317

Téléchargements de fichiers

117