M. Enriquez, Identifying temporally persistent flows in the terminal airspace via spectral clustering, ATM Seminar, p.2013

M. Mahrsi and F. Rossi, Graph-Based Approaches to Clustering Network-Constrained Trajectory Data, Lecture Notes in Computer Science, vol.7765, pp.124-137, 2013.
DOI : 10.1007/978-3-642-37382-4_9

URL : https://hal.archives-ouvertes.fr/hal-00874886

J. Kim and H. S. Mahmassani, Spatial and Temporal Characterization of Travel Patterns in a Traffic Network Using Vehicle Trajectories, papers selected for Poster Sessions at The 21st International Symposium on Transportation and Traffic Theory Kobe, pp.164-184, 2015.
DOI : 10.1016/j.trpro.2015.07.010

M. Ester, H. Peter-kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, pp.226-231, 1996.

N. Ferreira, J. T. Klosowski, C. E. Scheidegger, and C. T. Silva, -Means: Clustering Trajectories by Fitting Multiple Vector Fields, Computer Graphics Forum, vol.33, issue.2, pp.201-210, 2013.
DOI : 10.1111/cgf.12107

URL : https://hal.archives-ouvertes.fr/hal-00656004

T. W. Liao, Clustering of time series data???a survey, Pattern Recognition, vol.38, issue.11, pp.1857-1874, 2005.
DOI : 10.1016/j.patcog.2005.01.025

S. Rani and G. Sikka, Recent Techniques of Clustering of Time Series Data: A Survey, International Journal of Computer Applications, vol.52, issue.15, pp.1-9, 2012.
DOI : 10.5120/8282-1278

F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Theory and Practice, ser, 2006.

J. Ramsay and B. Silverman, Functional Data Analysis, ser. Springer Series in Statistics, 2006.

W. Meesrikamolkul, V. Niennattrakul, and C. Ratanamahatana, Shape-Based Clustering for Time Series Data, Lecture Notes in Computer Science, vol.7301, pp.530-541
DOI : 10.1007/978-3-642-30217-6_44

A. Delaigle and P. Hall, Defining probability density for a distribution of random functions, The Annals of Statistics, vol.38, issue.2, pp.1171-1193, 2010.
DOI : 10.1214/09-AOS741

C. Bouveyron and J. Jacques, Model-based clustering of time series in group-specific functional subspaces Advances in Data Analysis and Classification, pp.281-300, 2011.

S. Puechmorel and F. Nicol, Entropy Minimizing Curves with Application to Automated Flight Path Design, Second International Conference, GSI 2015, 2015.
DOI : 10.1007/978-3-319-25040-3_82

URL : https://hal.archives-ouvertes.fr/hal-01162820

D. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization , ser. A Wiley-interscience publication, 1992.

K. Mardia and P. Jupp, Directional Statistics, ser, 2009.

K. V. Mardia, Statistics of directional data, Journal of the Royal Statistical Society. Series B (Methodological), vol.37, issue.3, pp.349-393, 1975.

E. García-portugués, R. M. Crujeiras, and W. González-manteiga, Kernel density estimation for directional???linear data, Journal of Multivariate Analysis, vol.121, pp.152-175, 2013.
DOI : 10.1016/j.jmva.2013.06.009

P. E. Jupp and K. V. Mardia, Maximum Likelihood Estimators for the Matrix Von Mises-Fisher and Bingham Distributions, The Annals of Statistics, vol.7, issue.3, pp.5-599, 1979.
DOI : 10.1214/aos/1176344681

G. Dahlquist and . Björck, Numerical Methods in Scientific Computing: Volume 1, ser. SIAM e-books Available: https, Society for Industrial and Applied Mathematics, 2008.

M. P. Wand, Fast Computation of Multivariate Kernel Estimators, Journal of Computational and Graphical Statistics, vol.9, issue.4, pp.433-445, 1994.
DOI : 10.1214/aos/1176346792