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Abstract—This paper introduces Fuzzy Dual Dynamic 

Programming as a specific realization of Fuzzy Dynamic 

Programming to tackle more efficiently optimization problems 

with fuzzy uncertainty in the values of involved parameters. A 

case study considering long term airport planning is discussed. 

Keywords-dynamic programming; fuzzy dual numbers; fuzzy 

dual calculus; airport planning. 

I.  INTRODUCTION 

 While deterministic optimization problems are 

formulated with assumed known parameters, very often, real 

world problems introduces various degrees of uncertainty in 

problem parameters. When the parameters are only known to 

remain within given bounds, one way to tackle such problems 

is through robustness analysis. When probability distributions 

are available for their values, stochastic optimization 

techniques may provide the most expected solution. An 

intermediate approach adopts the fuzzy formalism [1] to 

represent parameter uncertainties to provide the most possible 

solution. These three approaches lead in general to 

cumbersome computations.  

This paper adopts the recent formalism of fuzzy dual numbers 

introduced by Cosenza and Mora-Camino in 2011 [2], to treat 

parameter uncertainty and solution diversion in mathematical 

optimization problems through a better trade-off between 

complexity and effectiveness of the proposed solution. First, 

fuzzy dual numbers and fuzzy dual calculus are introduced. 

Then Dynamic Programming is considered, including its 

general fuzzy version [3], before Fuzzy Dual Dynamic 

Programming specific characteristics are introduced and 

discussed. Finally, a case study considering financial risk 

associated to long term airport planning is developed. 

II. FUZZY DUAL NUMBERS 

A. Definition 

A set of fuzzy dual numbers is defined as the set ∆ ̃of numbers 

of the form (a, b)= .a b , where a is the primal part and b is 

the dual part of the fuzzy dual number ,a R b R    . 

 represents the unity pure dual number.  

A fuzzy dual number loses both its dual and fuzzy attributes if 

b equals zero. The lower and upper bounds of .a b  are 

given by: 

 ( . )lowB a b a b     and  ( . )highB a b a b          (1) 

The pseudo norm of a fuzzy dual number is given 

by . .a b a b R      , where 0   is the shape parameter. 

The shape parameter is given by: 

(1 / ) ( )

b

b

b u du 




                               (2) 

where µ is the membership function which is supposed to be 

symmetric with respect to a. . Figure 1 shows an example of 

triangular fuzzy dual membership function. 
 

 
 

Fig. 1 Graphical representation of a triangular fuzzy dual 

number 

 

Figure 2 gives several graphical representations of fuzzy dual 

numbers with different shape parameters. 

 
 

Fig. 2   Examples of fuzzy dual numbers with different shape 

parameters 

 

The following properties of the pseudo norm are maintained, 

no matter the values the shape parameters take: 

. : . 0a b a b                  (3) 

,a R b R    . 0 0a b a b            (4) 

   . . . .a b a b               



, , ,a R b R                         (5) 

 . . . .a b a b     
 

B. Ordering Fuzzy Dual Numbers 

When comparing two fuzzy dual numbers, only four different 

relative situations appear. They are represented in figure 3: 

 

 
Fig. 3 Relative situations of two fuzzy dual numbers 

 

Here Case a corresponds to a strong partial order, written


, 

which is be defined over ∆̃ by: 

22112211 :
~

, babababa   


 

2211 baba                             (6) 

The mean partial order of case b, written  , is defined over ∆ ̃

by:  

2112211 :
~

, babababa é   


 

112211 bababa                          (7) 

The weak partial order of case c, written~ , is such as: 

  

2211221121 ,, babababaaa               (8) 

 

The fuzzy equality between two fuzzy dual numbers, 

corresponding to case d, is symbolized by   and is 

characterized by:  

21 aa     and     
21 bb                           (9)  

Then, it appears that it is always possible to rank two fuzzy 

dual numbers and to assign a qualitative evaluation to this 

comparison (strong, mean or weak). When either (6), (7) or (8) 

is satisfied, it will be said that fuzzy dual number 
11 ba  is 

greater than fuzzy dual number 
22 ba   and we will write: 

2211 baba                             (10) 

A degree of certainty c can be attached to this assertion. A 

candidate expression for this degree is given by: 
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where α is the area of the intersection between fuzzy dual 

numbers 
11 ba   and 

22 ba  .  

In Figure 3, in case a: c=1, in case b: c=0.9, in case c: c=0.7 

and in case d: c =0.5. 

III. FUZZY DUAL CALCULUS 

Here basic operations with fuzzy dual numbers are briefly 
introduced and extended to fuzzy dual vectors and matrices as 
described in [4]. 

A. Basic Operations 

The fuzzy dual neutral element is given by: )00(0
~

 . The 

neutral element of fuzzy dual multiplication is given by 

)01(1
~

  and only non-zero crisp numbers have an inverse. 

The fuzzy dual addition of two fuzzy dual numbers, denoted 

by~ , identical to the dual numbers addition, is given by: 

 

)()()(
~

)( 21212211 bbaababa        (12) 

 

The fuzzy dual product of two fuzzy dual umbers, denoted 

by ~ , is given by: 

 

))(()(~)( 1221212211 babaaababa       (13) 

 

The fuzzy dual product is constructed in a way that the fuzzy 

interpretation of the dual part is preserved but is different from 

dual calculus.  

Both fuzzy dual addition and fuzzy dual multiplication are 

commutative and associative, while fuzzy dual multiplication 

is also distributive with respect to the fuzzy dual addition. The 

nilpotent property of operator ε is maintained: 

0
~~ 2                                 (14) 

B.     Fuzzy dual vectors and matrices 

 

Let E be a Euclidean space of dimension p over R, we 

construct a set E
~

 composed of pairs of vectors, which are 

called dual fuzzy vectors taken from the Cartesian 

product
EE , where E+ is the positive half-space of E in its 

canonical basis. The following operations are defined over E
~

: 

Addition:  

 
 EdcEbadbcadcba ,,),(),(),(  (15) 

 

The multiplication by a fuzzy dual scalar   is given by:  

 

Ebaababa
~

),(,
~

),(),()(      (16)                  

The set nM
~

 of fuzzy dual square matrices of order nn is 

constructed on the same logic as fuzzy dual numbers and 

fuzzy dual vectors. Hence, a fuzzy dual matrix will be defined 

as: 

)()()]()([][ AdAradaraA ijijij            (17)                                                  

 

where )(Ar is a nnR  matrix and )(Ad is a positive nnR  matrix.   



The basic operations over dual square matrices will be defined 

as follows: 

 

MBABDADBRARBA
~

,))()(()()(       (18)                          

MBABRADBDARBRARBA
~

,))()()()(()()(     (19)                      


~

))()()()(()()(  ARDADRARRA   (20) 

 

The product of a fuzzy dual square matrix by a fuzzy dual 

vector u is considered in this context to be a fuzzy dual vector 

given by: 

))()()()(()()( uRADuDARuRARuA      (21)                

IV. FUZZY DYNAMIC PROGRAMMING 

The Since its publication in the late 1950’s by R. Bellman, 
Dynamic Programming has become very quickly a widely 
applied mathematical formalism in decision-making processes.  

A. Dynamic Programming 

Dynamic Programming is a mathematical technique to 

optimize a sequence of interrelated decisions, providing a 

systematic procedure for determining the optimal combination 

of these decisions. The objective of Dynamic Programming is 

to optimize sequential decision-making processes. It has been 

applied in a multitude of fields and industries, ranging from 

economics to engineering. From the mathematical point of 

view, Dynamic Programming can be applied to linear or 

nonlinear problems involving either real or integer variables. 

The only applicability condition consists in the mathematical 

separability of the objective and constraint functions with 

respect to the different decision variables. Dynamic 

Programming can tackle processes either deterministic or 

stochastic in nature, with a continuous or a discrete stage 

evolution, with both finite and infinite problem duration. 

Currently, the field of application of dynamic programming 

has become even more diverse, targeting optimization 

problems that can be reformulated as multi-stage decision 

processes. Some of the main areas of decision making such as 

Artificial Intelligence, Automatic control and Operations 

Research, make use of the paradign of Dynamic 

Programming.  

B. Fuzzy Dynamic Programming 

Dynamic programming was one of the earliest fundamental 

methodologies to which fuzzy sets was applied [Bellman and 

Zadeh, [3], leading to what is presently called fuzzy dynamic 

programming [5], [6]. Fuzzy dynamic programming has been 

applied successfully to multi stage decision making problems 

in a multitude of areas, with real world applications like civil 

and environmental engineering (integrated regional 

development, water resources operation and design, pollution 

control modeling), transportation (traffic planning and 

routing), energetic systems, health care, control systems, 

aerospace systems, etc. A significant body of work emerged 

since dynamic programming started being applied in 

conjunction with fuzzy representation.  

Formally, let X be a space of options, then, given a fuzzy goal 

G in X characterized by the fuzzy membership function 

)(xG  and a fuzzy constraint C in X characterized by the 

fuzzy membership function )(xC , a fuzzy decision D in X 

which satisfies C while achieving G will have a fuzzy 

membership function )(xD defined by:  

  Xxxxdx GCD  ,1,0))(),(()(            (22) 

which provides for each Xx a measure of performance 

ranging from 1 for an excellent feasible decision to 0 for a 

very bad or unfeasible decisions, with intermediate values.  In 

[7] function d is the fuzzy and operator which can be taken 

such as: 

  Xxxxxx GCGC  )(),(min)()(          (23) 

In that case, the optimal decision with respect to Xx  will 

be such that: 

))()((sup)( * xxx GC
Xx

D  


             (24) 

Another common realization of the fuzzy and operator is:  

 

    (25) 

 

 It appears that in both cases, the constraint and the goal are 

treated with the same priority since: 

 )()()()( xxxx CGGC                    (26) 

and 

)()()()( xxxx CGGC     Xx     (27) 

 However for many applications, feasibility is a condition to 

be considered prior to any assessment of the degree of 

achievement of the goal. What can be expected is that a more 

appropriate fuzzy and function ),( GCd  fill the following 

conditions: 

- 0),0( Gd  and 0)0,( Cd  ; 

- d is increasing with respect to both arguments;  

- d is not commutative. 

Examples of candidate d functions are: 

GCGCd 

),(    with   1                  (28)                                        
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       (30)                    

with              10 maxmin  ss                                

Here it will be considered that an analogous reasoning stands 

for the case of multiple fuzzy constraints and fuzzy goals, 

even if defined in different spaces.  

Xxxxxx GCGC  )()()()( 



Suppose that the fuzzy constraint C is defined on a fuzzy set in 

X={x}, the fuzzy goal G is defined on a fuzzy set Y={y}, and 

a function )(,: xfyYXf  is known. Typically, X and Y 

are decisions sets and their outcomes, respectively.  Now the 

induced fuzzy goal G’ in X generated by G in Y is given by: 

))(()(' xfx GG   , for each Xx           (31) 

with both G’ and C being defined as fuzzy sets in the same 

space X. The min-type fuzzy decision is  

 

))((ˆ)()(ˆ)()( ' xfxxxx GCGCD    for each Xx  (32) 

 

Then, for n fuzzy constraints defined in X, C1 , …, Cn , m fuzzy 

goals defined in Y, G1 , …, Gm , and a function )(xfy  , then 

the min-type fuzzy decision is given by: 

 

Xx

xfxfxxx
nm GGCCD



 )))((...))(((ˆ))()(()(
11

   (33) 

 

C. Dual Fuzzy Dynamic Programming 

In this case, we consider the following problem: 






1

1

),(max
N

n

nnn xsg                           (34) 

with               ),(),(),( nnnnnnnnn xsdxscxsg                (35) 

 

where cn and dn are real valued functions and the feasibility 

conditions are supposed to be given by: 

      SxsTs nnn  ),(1
and 

nSn Xx  , 1s  given        (36) 

The adopted mathematical formalism, already proposed in [8] 

avoids some of the numerical difficulties appointed in the 

previous section. 

 Here N is the horizon of optimization,  T  represents 

the transition of the process from state sn when decision xn is 

taken, the resulting state is sn+1. 
nSX is the set of feasible 

decisions according to current state sn of the process. 

A transition graph ],[ XSG   is built from the initial state s1 

by considering all feasible decisions from each state of each 

stage to the next stage: 
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1

0
sTS n

N

n
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n
N
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1
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         (37) 

The optimality principle of dynamic programming can be put 

into action here to built from a stage to the next an optimal 

solution tree once fuzzy dual performances can always be 

compared according to (6), (7), (8) and (9) . For that, the fuzzy 

dual comparison proposed in paragraph II.B is used. When the 

performance of a path to a state is considered superior to any 

other path to this state with a degree of certainty c higher than 

0.6, this path with the corresponding decision to reach it from 

the previous stage is retained. While, when 0.4≤ c ≤ 0.6, the 

two fuzzy dual performances are considered very close and 

any of them can be taken as superior.  

Then supposing that nj is the set of states of stage n-1 from 

which it is possible to reach state j of stage n, the retained 

decision from stage n-1 to state j of stage n will be associated 

to a state 
*

nk of stage  n-1 such as: 

  

 )),(,(maxarg 1

*

1

jkkgGk n

k

n
k

n

jn

 
 

                 (38) 

where  
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and where a resulting degree certainty is given by: 

jkn
kkk

j

n cc
njn

,,
, *

,1

min
 

                         (40) 

where cn,k,j is attached to the degree of certainty of the fuzzy 

dual comparison of )),(,(1 jkkgG n

k

n 
 with 

)),(,( **

1

*

jkkgG nnn

k

n
n 

. 

 

Then to each state j of each stage n is attached:  

- a fuzzy dual performance given by )),(,( **

1

*

jkkgG nnn

k

n
n 

and 

representing the deterministic aspects (the real part of the 

performance index) as well as the degree of uncertainty (the 

dual part of the performance index) 

- a degree of certainty 
j

nc of having chosen the best solution to 

reach state j at stage n.  

 

The optimal sequence of decisions will follow from one stage 

to the next, the path from the initial state at the initial stage to 

a best performance state at the final stage. 

 

V. CASE STUDY 

A. Airport planning 

Airport planning is in general a long term planning issue 

which has at its core the following objectives [9]: optimized 

infrastructure development costs and functionality, optimized 

economic and operational performance and a high degree of 

flexibility in order to integrate all the shifts in demand and 

potential disturbances according to the airport future needs 

and level of growth. The new business culture concepts that 

airports need to embrace includes strong air service competitor 

advantages, capability of taking long-term risks, adopting the 

stakeholder collaborative decision making culture, 

diversifying the revenues sources and most of all putting the 

passenger at the core of the business.  

The construction of a new airport or the extension of an 

existing one requires significant investments and many times 

public-private partnerships have been considered in order to 

make feasible such projects [10]. One characteristic of these 

projects is uncertainty with respect to financial and 

environmental impacts on the medium to long term. Another 

one is the multistage nature of these types of projects. While 

many airport development projects have been a success like 

Munich Airport or Palma de Mallorca Airport, some others 



have turned into a nightmare for their promoters. For the 

illustration of the approach, the case of a national airport 

expected to gain an international position has been considered. 

The airport is supposed to be managed under a BOT 

agreement (Build – Operate – Transfer) over a future period of 

twenty five years. The financial risk of the concessionaire is to 

be unable to recover its investment, operating and 

maintenance expenses in the project. In this type of situation, 

the project proponent is facing a significant amount of risk 

that needs to be assessed and mitigated.  

 

B. Costs,  Revenues and Decisions 

Different traffic types leading to costs and revenues can be 

considered in airports, they cover passengers and freight flows 

as well as aircraft traffic which is related with the level of 

these flows. Let the level of predicted potential demand for 

traffic type i along the planning horizon K be given 

by  KkIiDi

k ,,2,1,,  , where I is the set of traffic 

activities. The necessary aircraft traffic 
i

kT  to cope with a 

predicted passenger demand level i

kD  can be approximated 

by: 

 )( i

k

i

k

i

k

i

k SDT                              (41) 

 where 
i

kS  is the mean capacity of aircraft type i at time k 

corrected by the expected mean load factor 
i

k . The rate of 

return,
i

kr , associated with the traffic of type i at time k, 

depends on the investments made until that period. Let the 

potential airport passenger processing capacity be iP

kC  and the 

potential aircraft movements processing capacity be Ti

kC , then 

the estimated level of demand of type i at period k, 
i

kD , is 

such as: 

},,min{ iT

k

i

k

Pi

k

i

k

i

k CSCDD                        (42) 

 

Let Li be the number of candidate upgrades, which can be 

performed for traffic, type i at the considered airport. Let 
i

l be the period (an integer) at which upgrade l for traffic 

type i is planned to be done. When a project is retained, the 

corresponding value of i

l  is within the set },...,2,1{ K   and 

when it is not retained 1 Ki

l , },...,2,1{ iLl .  

Different types of constraints may be found between 

interrelated projects: 

- Sequential constraints: Technical considerations impose in 

general sequential constraints, so it is supposed that for given 

a type of traffic i and a pair of projects (l, l’), there may be 

constraints such as: 

  i

l

i

li IiLll ':,1,,1',                        (43) 

- Exclusion constraints such as if project l for traffic type i is 

retained, a set of concurrent or contradictory projects will be 

dismissed: 

 i
i

l

i

l

i

l LlKK ,,1',1},...,2,1{ '         (44) 

- Inclusion constraints such as if project l for traffic type i is 

retained, a set of complementary projects related with other 

traffic should be performed altogether: 

 
j

i

l

i

l

j

l

i

l LMlK ,,1',},...,2,1{ '          (45) 

Since the different types of traffic may use common resources 

in the airport, global capacity constraints must be satisfied. Let 

k be the set of projects which have been retained until period 

k, then the corresponding capacities with respect to passengers 

and flights are )( k

Pi

kC  and )( k

T

k
iC  . 

Let )( k

ik

lc   be the cost of upgrade l with respect to traffic 

type i when performed at period k. Revenues 
i

kR  from traffic 

type i at period k will be supposed to be given by: 

)( k

i

k
i

k

i

k DrR                                 (46) 

where 
i

kr is the corresponding service rates.  

 

C. Fuzzy Dual Performance Assessment 

Let the fuzzy dual representations of the effective levels of 

respectively rates of net return, demands and upgrade costs be 

given by: 
iD

k

iL

k

i

k rrr                                    (47) 
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i
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)()()( k

ikD

lk

ikL

lk

ik

l ccc                          (49) 

where the likely components are indexed by L and the dual 

components are indexed by D. In many situations, the likely 

components can be associated with mean estimated values 

while the dual components can be associated with their 

corresponding standard deviations. 

The expression of the fuzzy dual net present value is given by: 
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and 
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D. Application 

 

Figure 4 displays the dynamic programming decision graph 

associated to an airport plan development including two new 

runways and two terminal buildings over a period of 25 years 

divided in five stages of five years duration and corresponding 

to five different operational configurations for the airport. 

Here 31 different paths lead to the states of the final stage 

while 20 different states at equal or different stages must be 

evaluated following relations (50), (51) and (52). 



 
 

Fig. 4 Dynamic Programming Decision Graph 

 

 

 

VI. CONCLUSION 

 

This communication has considered sequential optimization 

problems where uncertainty is represented through fuzzy dual 

numbers. This formalism allows to limit the problem 

complexity and leads to the proposal of the Fuzzy Dynamic 

Programming approach which is introduced as a special case 

of Fuzzy Dynamic Programming. There the computational 

burden is turned feasible even when a new performance index, 

the degree of certainty, must be computed for each states in 

the sequential search process.  The result of this approach is to 

provide to the final decider a map of the decision space (in 

fact a decision graph, see figure 4). This map informs for each 

state at each stage about intervals for expected returns and 

about the degree of certainty to have chosen the right sequence 

of decision leading to this state. A case study considering risk 

analysis in a long term airport planning situation has been 

developed.  
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